Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative copper® chloride

Copper compounds are used routinely and widely to control freshwater snails that serve as intermediate vectors of schistosomiasis and other diseases that afflict humans (Hasler 1949 NAS 1977 Rowe and Prince 1983 Winger etal. 1984 Al-Sabri etal. 1993). These compounds include copper sulfate, copper pentachlorophenate, copper carbonate, copper-tartaric acid, Paris green (copper arsenite-acetate), copper oxide, copper chloride, copper acetyl acetonate, copper dimethyl dithiocar-bamate, copper ricinoleate, and copper rosinate (Cheng 1979). Also, many species of oyster enemies are controlled by copper sulfate dips. All tested species of marine gastropods, tunicates, echinoderms, and crabs that had been dipped for 5 seconds in a saturated solution of copper sulfate died if held in air for as little as a few seconds to 8 h mussels, however, were resistant (MacKenzie 1961). [Pg.130]

Copper chloride, oxide Copper chloride oxide, hydrate Copper chloroxide. See Copper oxychloride... [Pg.1038]

Sulphur dichloride oxide (thionyl chloride) on the hydrated chloride can also be used to produce the anhydrous chloride in certain cases, for example copper(II) chloride and chromium(III) chloride ... [Pg.343]

Another attractive commercial route to MEK is via direct oxidation of / -butenes (34—39) in a reaction analogous to the Wacker-Hoechst process for acetaldehyde production via ethylene oxidation. In the Wacker-Hoechst process the oxidation of olefins is conducted in an aqueous solution containing palladium and copper chlorides. However, unlike acetaldehyde production, / -butene oxidation has not proved commercially successflil because chlorinated butanones and butyraldehyde by-products form which both reduce yields and compHcate product purification, and also because titanium-lined equipment is required to withstand chloride corrosion. [Pg.489]

In a biotechnology-based approach, Japanese workers have reported on the microbial conversion of 2-methylnaphthalene to both 2-methyl-1-naphthol and menadione by Jiodococcus (64). The intermediate 2-methyl-1-naphthol can readily be converted to menadione by a variety of oxidizing agents such as heteropoly acids (65) and copper chloride (66). A review of reagents for oxidizing 2-methylnaphthalene and naphthol is available (67). [Pg.155]

Calcium carbonate has normal pH and inverse temperature solubilities. Hence, such deposits readily form as pH and water temperature rise. Copper carbonate can form beneath deposit accumulations, producing a friable bluish-white corrosion product (Fig. 4.17). Beneath the carbonate, sparkling, ruby-red cuprous oxide crystals will often be found on copper alloys (Fig. 4.18). The cuprous oxide is friable, as these crystals are small and do not readily cling to one another or other surfaces (Fig. 4.19). If chloride concentrations are high, a white copper chloride corrosion product may be present beneath the cuprous oxide layer. However, experience shows that copper chloride accumulation is usually slight relative to other corrosion product masses in most natural waters. [Pg.73]

Cupri-. cupric, copper(II). -azetst, n. cupric acetate, copper(II) acetate, -carbonat, n. cupric carbonate, copper(II) carbonate, -chlorid, n. cupric chloride, copper(II) chloride. -hydroxyd, n. cupric hydroxide, cop-per(II) hydroxide. -ion, n. cupric ion, copper(II) ion. -ozalat, n. cupric oxalate, copper(II) oxalate, -oxyd, n. cupric oxide, copper(II) oxide. -salz, n. cupric salt, copper(II) salt, -suifat, n. cupric sulfate. copper(II) sulfate, -sulfid, n. cupric sulfide, copper(II) sulfide, -verbihdung, /. cupric compound, copper(II) compound, -wein-saure, /. cupritartaric acid. [Pg.94]

Cupro-. cuprous, copper(I), cupro-. -chlorid, n. cuprous chloride, copper(I) chloride, -cy-aniir, n. cuprous cyanide, copper(I) cyanide cuprocyanide, cyanocuprate(I). -jodid, n. cuprous iodide, copper(I) iodide, -mangan, n. cupromanganese. -oxyd, n. cuprous oxide, copper(I) oxide, -salz, n. cuprous salt, cop-per(I) salt, -suifocyantir, n. cuprous thiocyanate, copper (I) thiocyanate, -verbin-dUDg, /. cuprous compound, copper(I) compound. [Pg.94]

With the growing prominence of the petrochemicals industry this technology was, in turn, replaced by direct air oxidation of naphtha or butane. Both these processes have low selectivities but the naphtha route is still used since it is a valuable source of the co-products, formic and propanoic acid. The Wacker process, which uses ethylene as a feedstock for palladium/copper chloride catalysed synthesis of acetaldehyde, for which it is still widely used (Box 9.1), competed with the direct oxidation routes for a number of years. This process, however, produced undesirable amounts of chlorinated and oxychlorinated by-products, which required separation and disposal. [Pg.263]

Presence of 5% of copper(II) chloride caused explosion to occur at 170°C [1]. Of the series of additives copper chromite, copper chloride, nickel oxide, iron oxide, magnesium oxide, the earlier members have the greatest effect in increasing the sensitivity of the perchlorate to heat, impact and friction. [Pg.1370]

Atomic hydrogen is a powerful reducing agent, even at room temperature. For example, it reacts with the oxides and chlorides of many metals, including silver, copper, lead, bismuth, and mercury, to produce the free metals. It reduces some salts, such as nitrates, nitrites, and cyanides of sodium and potassium, to the metallic state. It reacts with a number of elements, both metals and nonmetals, to yield hydrides such as NH3, NaH, KH, and PH3. Sulfur forms a number of hydrides the simplest is H2S. Combining with oxygen, atomic... [Pg.7]

Airco A modification of the Deacon process for oxidizing hydrogen chloride to chlorine. The copper catalyst is modified with lanthanides and used in a reversing flow reactor without the need for external heat. Developed by the Air Reduction Company from the late 1930s. U.S. Patents 2,204,172 2,312,952 2,271,056 2,447,834. [Pg.14]

Shell Deacon An improved version of the Deacon process for oxidizing hydrogen chloride to chlorine, using a catalyst containing the mixed chlorides of copper, potassium, and rare earths. Formerly operated in The Netherlands and still in operation in India. [Pg.242]

Wacker (1) A general process for oxidizing aliphatic hydrocarbons to aldehydes or ketones by the use of oxygen, catalyzed by an aqueous solution of mixed palladium and copper chlorides. Ethylene is thus oxidized to acetaldehyde. If the reaction is conducted in acetic acid, the product is vinyl acetate. The process can be operated with the catalyst in solution, or with the catalyst deposited on a support such as activated caibon. There has been a considerable amount of fundamental research on the reaction mechanism, which is believed to proceed by alternate oxidation and reduction of the palladium ... [Pg.286]

Palladium catalysts, 10 42 14 49 16 250 Palladium-catalyzed carbonylation, 13 656 Palladium chloride/copper chloride, supported catalyst, 5 329 Palladium compounds, 19 650-654 synthesis of, 19 652 uses for, 19 653-654 Palladium films, 19 654 Palladium membranes, 15 813 Palladium monoxide, 19 651 Palladium oxide, 19 601... [Pg.669]

The basic study was performed on copper complexes with N,N,N, N1-tetramethylethane-1,2-diamine (TMED), which were known to be very effective oxidative coupling catalysts (7,12). From our first kinetic studies it appeared that binuclear copper complexes are the active species as in some copper-containing enzymes. By applying the very strongly chelating TMED we were able to isolate crystals of the catalyst and to determine its structure by X-ray diffraction (13). Figure 1 shows this structure for the TMED complex of basic copper chloride Cu(0H)Cl prepared from CuCl by oxidation in moist pyridine. [Pg.10]

The more expedient, direct catalytic oxidation route to acetone was developed in Germany in the 1960s. If you had been in charge of building the acetone business from scratch, you d probably not have built any IPA-to-acetone plants if you had known about the Wacker process. It s a catalytic oxidation of propylene at 200—250°F and 125—200 psi over palladium chloride with a cupric (copper) chloride promoter. The yields are 91-94%. The hardware for the Wacker process is probably less than for the combined IPA/acetone plants. But once the latter plants were built, the economies of the Wacker process were not sufficient to shut them down and start all over. So the new technology never took hold in the United States. [Pg.243]


See other pages where Oxidative copper® chloride is mentioned: [Pg.219]    [Pg.220]    [Pg.194]    [Pg.195]    [Pg.175]    [Pg.164]    [Pg.1043]    [Pg.187]    [Pg.200]    [Pg.219]    [Pg.220]    [Pg.194]    [Pg.195]    [Pg.175]    [Pg.164]    [Pg.1043]    [Pg.187]    [Pg.200]    [Pg.2748]    [Pg.208]    [Pg.56]    [Pg.292]    [Pg.798]    [Pg.137]    [Pg.10]    [Pg.37]    [Pg.38]    [Pg.417]    [Pg.132]    [Pg.303]    [Pg.245]    [Pg.81]    [Pg.132]    [Pg.142]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Copper chloride

Copper oxidized

Oxidants copper

Oxidation chloride

Oxidative coppering

Oxide chlorides

Oxidic copper

© 2024 chempedia.info