Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation with metal substituted molecular sieve

The oxidation of aniline was carried out in the liquid phase over a series of transition metal - substituted molecular sieves. For low oxidant/aniline ratios, azoxybenzene (AZY) was the major product formed over Ti-containing catalysts, the reaction was limited by diffusion for medium pore zeolites like TS-l and mesoporous silicas were preferred as they permitted the use of both H2O2 and tert-butyl hydroperoxide as oxidants. Higher oxidant/aniline ratios (>2) led to the formation of nitrobenzene (NB), whose selectivity was proportional to the catalyst concentration. In contrast, vanadium containing molecular sieves were only active with TBHP and aniline was converted very selectively into nitrobenzene for all oxidant concentrations. [Pg.689]

Many transition metal-substituted molecular sieves could be used as catalysts in the liquid phase oxidation of aniline with alkylperoxides. Even though TS-1 had a good activity in this reaction it was probably not the best catalyst, the reaction being limited by the diffusion of reagents and/or products in the channels of the zeolite. This is why we preferred large pore zeolites or mesoporous silicas, which have the additional advantage with respect to TS-1 to be active with bulky oxidants like tert-butyl hydroperoxide. [Pg.696]

Benzylic oxidation of aromatic side-chains is also a well established technology in the bulk chemicals arena, e. g. toluene to benzoic acid and p-xylene to ter-ephthalic acid [1,2]. These processes involve homogeneous catalysis by, e. g., cobalt compounds, however, and also fall outside the scope of this book. Ammoxi-dation of methyl-substituted aromatic and heteroaromatic compounds is performed over heterogeneous catalysts in the gas phase but this reaction is treated elsewhere (Section 9.5). Transition metal-substituted molecular sieves have been widely studied as heterogeneous catalysts for oxidation of aromatic side-chains in the liquid phase, but there are serious doubts about their heterogeneity [5,6]. Here again, a cursory examination of the literature reveals that supported palladium seems to be the only heterogeneous catalyst with synthetic utility [4]. [Pg.519]

A promising and cleaner route was opened by the discovery of titanium silica-lite-1 (TS-1) [1,2]. Its successful application in the hydroxylation of phenol started a surge of studies on related catalysts. Since then, and mostly in recent years, the preparation of several other zeolites, with different transition metals in their lattice and of different structure, has been claimed [3]. Few of them have been tested for the hydroxylation of benzene and substituted benzenes with hydrogen peroxide. Ongoing research on suppoi ted metals and metal oxides has continued simultaneously. As a result, knowledge in the field of aromatic hydroxylation has experienced major advances in recent years. For the sake of simplicity, the subject matter will be ordered according to four classes of catalyst medium-pore titanium zeolites, large-pore titanium zeolites, other transition metal-substituted molecular sieves, and supported metals and mixed oxides. [Pg.538]

It has been already emphasized that substitution of heteroelements into the framework of molecular sieves creates acidic sites. Incorporation of transition elements such as Ti, V, Mn, Fe, or Co, which have redox properties, provides molecular sieves with redox active sites that are involved in oxidation reactions (323-332). As mentioned in the beginning of the article, the transition metal-substituted molecular sieves, the so-called redox molecular sieves, exhibit several advantages compared with other types of heterogeneous redox catalysts (1) redox sites are isolated in a well-defined internal structure therefore, oligomerization of the active oxometal species is prevented (this is a major reason for the deactivation of homogeneous catalysts) (2) the site isolation (the so-called microenvironment) of redox centers prevents the leaching of the metal ions, which frequently happens in liquid-phase oxidations catalyzed by conventional transition metal-supported catalysts (3) well-defined cavities and channels of molecular dimensions endow the catalysts with unique performances such as the shape selectivity (and traffic control) toward reactants, intermediates, and/or products. [Pg.1654]

The demonstration by Enichem workers [1] that titanium silicalite (TS-1) catalyzes a variety of synthetically useful oxidations with 30% aqueous hydrogen was a major breakthrough in the field of zeolite catalysis [2], The success of TS-1 prompted a flourish of activity in the synthesis of other titanium-substituted molecular sieves, such as titanium silicalite-2 (TS-2) [3], Ti-ZSM-48 [4] Ti-Al-mordenite [5], Ti-Al-beta [6]and Ti-MCM-41 [7]. Moreover, this interest has also been extended to the synthesis of redox molecular sieves involving framework substitution by other metals, e.g. chromium, cobalt, vanadium, etc. [8]. [Pg.163]

On the other hand, tBuOOH forms a chain complex with transition metal ions which severes to produce tBuO radicals. The mechanism proposed, although very incomplete and still under investigation, allows to explain the side chain oxidation and Involves the redox system present in V-substituted molecular sieves. [Pg.453]

The isomorphous substitution of T atoms by other elements produces novel hybrid atom molecular sieves with interesting properties. In the early 1980s, the synthesis of a zeolite material where titanium was included in the MFI framework of silicalite, that is, in the aluminum-free form of ZSM-5, was reported. The name given to the obtained material was titanium silicalite (TS-1) [27], This material was synthesized in a tetrapropylammonium hydroxide (TPAOH) system substantially free of metal cations. A material containing low levels (up to about 2.5 atom %) of titanium substituted into the tetrahedral positions of the MFI framework of silicalite was obtained [28], TS-1 has been shown to be a very good oxidation catalyst, mainly in combination with a peroxide, and is currently in commercial use. It is used in epoxidations and related reactions. TS-1, additionally an active and selective catalyst, is the first genuine Ti-containing microporous crystalline material. [Pg.426]

Thus, in ammonia synthesis, mixed oxide base catalysts allowed new progress towards operating conditions (lower pressure) approaching optimal thermodynamic conditions. Catalytic systems of the same type, with high weight productivity, achieved a decrease of up to 35 per cent in the size of the reactor for the synthesis of acrylonitrile by ammoxidation. Also worth mentioning is the vast development enjoyed as catalysis by artificial zeolites (molecular sieves). Their use as a precious metal support, or as a substitute for conventional silico-aluminaies. led to catalytic systems with much higher activity and selectivity in aromatic hydrocarbon conversion processes (xylene isomerization, toluene dismutation), in benzene alkylation, and even in the oxychlorination of ethane to vinyl chloride. [Pg.414]

The discovery, in the mid-eighties, of the remarkable activity of TS-1 as a catalyst for selective oxidations with aqueous H2O2 fostered the expectation that this is merely the progenitor of a whole family of redox molecular sieve catalysts with unique activities. However, the initial euphoria has slowly been tempered by the realization that framework substitution/attachment of redox metal ions in molecular sieves does not, in many cases, lead to a stable heterogeneous catalyst. Nevertheless, we expect that the considerable research effort in this area, and the related zeolite-encapsulated complexes, will lead to the development of synthetically usefril systems. In this context the development of chiral ship-in-a-bottle type catalysts for intrazeolitic asymmetric oxidation is an important goal. Such an achievement would certainly justify the appellation mineral enzyme . [Pg.171]

Tanev et al. have reported the synthesis of mesoporous materials via a route which involves self-assembly between neutral primary amines and neutral inorganic framework precursors.12 The regularity of the pore structure in these materials has been illustrated by lattice images which show a honeycomb like structure. The system of channels of these molecular sieves produces solids with very high internal surface area and pore volume. This fact combined with the possibility of generating active sites within the channels produces a very unique type of acid catalyst. In the case of transition metal substituted M41S, the principal interest lies in their potential as oxidation catalysts, especially Ti and V substituted MCM and HMS type materials, and more recently synthesised large pore materials.13... [Pg.21]

The ease of the redox reactions of metal cations in the framework suggests that metal cations can be easily substituted into the framework of aluminophosphate molecular sieves. The changes in the coordination of Al ions in the framework by the adsorption of some gases such as H2 have also been reported by some researchers. This has not been observed for aluminosilicate zeolites. Although no investigation has been performed on the influence of the framework environment on the catalytic properties of aluminophosphate molecular sieves, there is a possibility that the restricted redox properties of metal cations in the framework catalyze reactions which proceed over free metal cations, as with oxides or ion-exchanged zeolites. [Pg.31]

One approach to creating heterogeneous oxidation catalysts with novel activities and selectivities is to incorporate redox metals, by isomorphous substitution, into the lattice framework of zeolites and related molecular sieves. Site-isolation of redox metals in inorganic lattices prevents the dimerization or oligomerization of active oxometal species which is characteristic of many homogeneous oxometal complexes and leads to their deactivation in solution. We coined the term redox molecular sieves to describe such catalysts . The first and most well-known example is titanium silicalite (TS-1) which has been shown to catalyze a variety of systhetically useful oxidations with H202. ... [Pg.455]

As part of an ongoing programme on redox molecular sieves we are investigating the use of metal substituted alumino-phosphates (MeAPOs) in liquid phase oxidations. We have found that CrAPO-5 is an active and selective catalyst for the liquid phase oxidation of secondary alcohols with TBHP or O2. [Pg.455]

The most efficient catalysts in liquid-phase oxidation of organic compoimds were crystalline mked oxides [1]. They are ionic mixed oxides or mixed oxides containing oxides supported on oxides. In the latter case, the catalytic activity of the oxide support is increased by adding one or more metal components or is obtained by immobilization of metal oxides on inactive oxide support. Metal ions were isomorphously substituted in framework positions of molecular sieves, for example, zeolites, silicalites, silica, aluminosilicate, aluminophosphates, silico-aluminophosphates, and so on, via hydrothermal synthesis or postsynthesis modification. Among these many mixed oxides with crystalline microporous or mesoporous structure, perovskites were also used as catalysts in liquid-phase oxidation. [Pg.483]


See other pages where Oxidation with metal substituted molecular sieve is mentioned: [Pg.522]    [Pg.528]    [Pg.163]    [Pg.296]    [Pg.327]    [Pg.178]    [Pg.210]    [Pg.278]    [Pg.180]    [Pg.163]    [Pg.390]    [Pg.317]    [Pg.369]    [Pg.422]    [Pg.117]    [Pg.374]    [Pg.378]    [Pg.101]    [Pg.408]    [Pg.611]    [Pg.28]    [Pg.546]    [Pg.295]    [Pg.412]    [Pg.385]    [Pg.602]    [Pg.534]    [Pg.548]    [Pg.93]    [Pg.178]    [Pg.354]    [Pg.154]    [Pg.345]    [Pg.354]    [Pg.1044]   
See also in sourсe #XX -- [ Pg.523 ]




SEARCH



Metal substituted

Metal substitution

Metal substitutional

Metallic molecular

Metallic substitutions

Molecular metal

Molecular sieves

Molecular sieving

Oxidative substitution

Substituted Oxidation

© 2024 chempedia.info