Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidations of cyclohexane

Oxidation of Cyclohexane. The synthesis of cyclohexanol and cyclohexanone is the first step in the transformation of cyclohexane to adipic acid, an important compound in the manufacture of fibers and plastics. Cyclohexane is oxidized industrially by air in the liquid phase to a mixture of cyclohexanol and cyclohexanone.866 872-877 Cobalt salts (naphthenate, oleate, stearate) produce mainly cyclohexanone at about 100°C and 10 atm. The conversion is limited to about 10% to avoid further oxidation by controlling the oxygen content of the reaction mixture. Combined yields of cyclohexanol and cyclohexanone are about 60-70%. [Pg.505]

The cobalt-catalyzed oxidation of cyclohexane takes place through cyclohexyl hydroperoxide with the cobalt catalyst acting primarily in the decomposition of the hydroperoxide to yield the products 870 877 [Pg.505]

Oxidation catalyzed with boric acid (160-175°C, 8-10 atm) results in the formation of cyclohexyl esters.878,879 After hydrolysis a product mixture containing mainly cyclohexanol is formed.878 Since borate esters are less sensitive to further oxidation, better yields are usually achieved (85% at 12% conversion).872 [Pg.505]

An industrially important example of such a process is the oxidation of cyclohexane to cyclohexanone and cyclohexanol. Cobalt salts are used as multifunctional catalysts. Cyclohexane is generally oxidized in the presence of about 20 ppm of a soluble cobalt salt such as cobalt naphthenate in the liquid phase at 125-165 °C and 8-15 bar up to a conversion of 10-12 %. [Pg.69]

The radical process begins with the radical-transfer agents R and ROO (R = CgHii). Cobalt acts as an electron-transfer catalyst and redox initiator in the process. In a one-electron step, the oxidation state of the metal varies between +2 and +3, and radicals are released from the cyclohexane hydroperoxide. Since the cobalt is also involved in a cyclic process, its function is purely catalytic, and thus only small amounts of catalyst are required. Other metals such as V, Cr, Mo, Mn can also be used. Industrial variants of the process have been developed by companies such as BASF, Bayer, DuPont, ICI, Inventa, Scientific Design, and Vickers-Zimmer [T9]. [Pg.70]

The mixture of cyclohexanone and cyclohexanol can be converted to adipic acid in a second step by oxidation with nitric acid in the presence of metal compounds such as Cu or salts as homogeneous catalysts. [Pg.70]

Cyclohexanone and cyclohexanol formed by aerobic oxidation of cyclohexane are essential intermediates needed to make eta-caprolactam and adipic [Pg.225]


High Peroxide Process. An alternative to maximizing selectivity to KA in the cyclohexane oxidation step is a process which seeks to maximize cyclohexyUiydroperoxide, also called P or CHHP. This peroxide is one of the first intermediates produced in the oxidation of cyclohexane. It is produced when a cyclohexyl radical reacts with an oxygen molecule (78) to form the cyclohexyUiydroperoxy radical. This radical can extract a hydrogen atom from a cyclohexane molecule, to produce CHHP and another cyclohexyl radical, which extends the free-radical reaction chain. [Pg.241]

Other processes explored, but not commercialized, include the direct nitric acid oxidation of cyclohexane to adipic acid (140—143), carbonylation of 1,4-butanediol [110-63-4] (144), and oxidation of cyclohexane with ozone [10028-15-5] (145—148) or hydrogen peroxide [7722-84-1] (149—150). Production of adipic acid as a by-product of biological reactions has been explored in recent years (151—156). [Pg.245]

I. V. Beiezia, E. T. Denisov, and N. M. Emanuel, Tie Oxidation of Cyclohexane, Peigamon Press, Oxford, England, 1965. [Pg.248]

Adipic acid (qv) has a wide variety of commercial uses besides the manufacture of nylon-6,6, and thus is a common industrial chemical. Many routes to its manufacture have been developed over the years but most processes in commercial use proceed through a two-step oxidation of cyclohexane [110-83-8] or one of its derivatives. In the first step, cyclohexane is oxidized with air at elevated temperatures usually in the presence of a suitable catalyst to produce a mixture of cyclohexanone [108-94-1] and cyclohexanol [108-93-0] commonly abbreviated KA (ketone—alcohol) or KA oil ... [Pg.232]

Bubble columns in series have been used to establish the same effective mix of plug-flow and back-mixing behavior required for Hquid-phase oxidation of cyclohexane, as obtained with staged reactors in series. WeU-mixed behavior has been established with both Hquid and air recycle. The choice of one bubble column reactor was motivated by the need to minimize sticky by-products that accumulated on the walls (93). Here, high air rate also increased conversion by eliminating reaction water from the reactor, thus illustrating that the choice of a reactor system need not always be based on compromise, and solutions to production and maintenance problems are complementary. Unlike the Hquid in most bubble columns, Hquid in this reactor was intentionally weU mixed. [Pg.524]

A mixture of succinic (15—25 wt %), glutaric (45—55 wt %), and adipic acid (25—35 wt %) is obtained as a by-product in the oxidation of cyclohexane to adipic acid. In 1993, the production of adipic acid by this process was in the range of two million metric tons, which corresponds to a production of about 100,000 metric tons of the mixture of the three acids. [Pg.537]

Hydrocarbon Oxidation. The oxidation of hydrocarbons (qv) and hydrocarbon derivatives can be significantly altered by boron compounds. Several large-scale commercial processes, such as the oxidation of cyclohexane to a cyclohexanol—cyclohexanone mixture in nylon manufacture, are based on boron compounds (see Cylcohexanoland cyclohexanone Eibers, polyamide). A number of patents have been issued on the use of borate esters and boroxines in hydrocarbon oxidation reactions, but commercial processes apparently use boric acid as the preferred boron source. The Hterature in this field has been covered through 1967 (47). Since that time the Hterature consists of foreign patents, but no significant appHcations have been reported for borate esters. [Pg.216]

BASF. In the Badische process, cyclohexanone is produced by Hquid-phase catalytic air oxidation of cyclohexane to KA oil, which is a mixture of cyclohexanone and cyclohexanol, and is followed by vapor-phase catalytic dehydrogenation of the cyclohexanol in the mixture. Overall yields range from 75% at 10% cyclohexane conversion to 80% at 5% cyclohexane conversion. [Pg.429]

Fig. 8. Approximate mechanism for the free-radical oxidation of cyclohexane (36). Fig. 8. Approximate mechanism for the free-radical oxidation of cyclohexane (36).
Cyclohexanol. This alcohol is produced commercially by the catalytic air oxidation of cyclohexane or the catalytic hydrogenation of phenol. [Pg.425]

The oxidation of cyclohexane to a mixture of cyclohexanol and cyclohexanone, known as KA-od (ketone—alcohol, cyclohexanone—cyclohexanol cmde mixture), is used for most production (1). The earlier technology that used an oxidation catalyst such as cobalt naphthenate at 180—250°C at low conversions (2) has been improved. Cyclohexanol can be obtained through a boric acid-catalyzed cyclohexane oxidation at 140—180°C with up to 10% conversion (3). Unreacted cyclohexane is recycled and the product mixture is separated by vacuum distillation. The hydrogenation of phenol to a mixture of cyclohexanol and cyclohexanone is usually carried out at elevated temperatures and pressure ia either the Hquid (4) or ia the vapor phase (5) catalyzed by nickel. [Pg.425]

Vapor-phase oxidation of cyclohexane is commercially feasible, but the preferred route is Hquid-phase cyclohexane oxidation (2). In the latter... [Pg.425]

The alternative route involves the air oxidation of cyclohexane and proceeds via the production of a mixture of cyclohexanol and cyclohexanone often known as KA oil. It was in the cyclohexane oxidation section of the caprolactam plant of Nypro Ltd that the huge explosion occurred at Flixborough, England in 1974. [Pg.483]

Peroxytnfluoroacetic acid is used tor numerous oxidations of saturated hydrocarbons and aromatic compounds It oxidizes alkanes, alkanols, and carboxylic acids with formation of hydroxylation products [29] Oxidation of cyclohexane with peroxytnfluoroacetic acid proceeds at room temperature and leads to cyclohexyl trifluoroacetate in 75% yield, 1-octanol under similar conditions gives a mixture of isomeric octanediols in 59% yield, and palmitic acid gives a mixture of hydroxypalmitic acids in 70% yield [29]... [Pg.947]

The main process for obtaining adipic acid is the catalyzed oxidation of cyclohexane (Chapter 10). [Pg.258]

Oxidation of Cyclohexane (Cyclohexanone-Cyclohexanol and Adipic Acid)... [Pg.283]

Inspired by Gif or GoAgg type chemistry [77], iron carboxylates were investigated for the oxidation of cyclohexane, recently. For example, Schmid and coworkers showed that a hexanuclear iron /t-nitrobenzoate [Fe603(0H) (p-N02C6H4C00)n(dmf)4] with an unprecedented [Fe6 03(p3-0)(p2-0H)] " core is the most active catalyst [86]. In the oxidation of cyclohexane with only 0.3 mol% of the hexanuclear iron complex, total yields up to 30% of the corresponding alcohol and ketone were achieved with 50% H2O2 (5.5-8 equiv.) as terminal oxidant. The ratio of the obtained products was between 1 1 and 1 1.5 and suggests a Haber-Weiss radical chain mechanism [87, 88] or a cyclohexyl hydroperoxide as primary oxidation product. [Pg.94]

C04-0063. One starting material for the preparation of nylon is adipic acid. Adipic acid is produced from the oxidation of cyclohexane ... [Pg.263]

The slow oxidation of cyclohexane by Co(III) is mentioned in the following section. [Pg.373]

This is consistent with the observed products of oxidation, i.e. benzyl alcohol, benzaldehyde and benzoic acid and with the observed oxidation of cyclohexane. Radical-cations are, however, probably formed in oxidation of napthalene and anthracene. The increase of oxidation rate with acetonitrile concentration was intepreted in terms of a more reactive complex between Co(III) and CH3CN. The production of substituted benzophenones at high CH3CN concentration indicates the participation of a second route of oxidation. [Pg.373]

Consider an equilibrium-limited esterification reaction. One way to drive the reaction to completion is to remove the water formed by the reaction selectively through a membrane. This can be an attractive strategy when higher temperatures are undesirable due to factors like colouration of the materials and formation of undesirable products even though these may be present at a low level. As another example, consider the air oxidation of cyclohexane or cyclododecane to cyclohexanone/-ol or cyclododecanone/-ol, where the product can undergo more facile oxidation to unwanted or much lower value products. Consequently, industrial processes operate at a level of less than 5% conversion. If a membrane can selectively remove cyclohexanone as it is formed, the problems mentioned above can be thwarted. However, selective polymeric membranes, which can work at oxidation temperature, have not yet been proved. [Pg.171]

A recent stndy (13,27) describes the use of Co-Si-TUD-1 for the liquid-phase oxidation of cyclohexane. Several other metals were tested as well. TBHP (tert-butyl hydroperoxide) was used as an oxidant and the reactions were carried out at 70°C. Oxidation of cyclohexane was carried out using 20 ml of a mixture of cyclohexane, 35mol% TBHP and 1 g of chlorobenzene as internal standard, in combination with the catalyst (0.1 mmol of active metal pretreated overnight at 180°C). Identification of the products was carried out using GC-MS. The concentration of carboxylic side products was determined by GC analysis from separate samples after conversion into the respective methyl esters. Evolution and consumption of molecular oxygen was monitored volumetrically with an attached gas burette. All mass balances were 92% or better. [Pg.374]

Thus, it was shown that Co-Si-TUD-1 is a highly active catalyst for the oxidation of cyclohexane, has a high selectivity for mono-oxygenated species and cyclohexanone, and can be used repeatedly. [Pg.375]

IV Berezin, ET Denisov, NM Emanuel. The Oxidation of Cyclohexane. Oxford Pergamon Press, 1966. [Pg.51]

The question about the competition between the homolytic and heterolytic catalytic decompositions of ROOH is strongly associated with the products of this decomposition. This can be exemplified by cyclohexyl hydroperoxide, whose decomposition affords cyclo-hexanol and cyclohexanone [5,6]. When decomposition is catalyzed by cobalt salts, cyclohex-anol prevails among the products ([alcohol] [ketone] > 1) because only homolysis of ROOH occurs under the action of the cobalt ions to form RO and R02 the first of them are mainly transformed into alcohol (in the reactions with RH and Co2+), and the second radicals are transformed into alcohol and ketone (ratio 1 1) due to the disproportionation (see Chapter 2). Heterolytic decomposition predominates in catalysis by chromium stearate (see above), and ketone prevails among the decomposition products (ratio [ketone] [alcohol] = 6 in the catalytic oxidation of cyclohexane at 393 K [81]). These ions, which can exist in more than two different oxidation states (chromium, vanadium, molybdenum), are prone to the heterolytic decomposition of ROOH, and this seems to be mutually related. [Pg.395]

A similar development in this direction is the synthesis of a mixed-phase material containing both micro- and mesopores (Ti-MMM-1) (223). This material was synthesized by the addition of organic templates for mesopores (cetyltrimethylammonium bromide, CTABr) and micropores (tetrapropylammo-nium bromide, TPABr) at staggered times and the variation of the temperature of a single reaction mixture. Ti-MMM-1 is more selective (for oxidation of cyclohexane and of n-octane) than either Ti-MCM-41 or TS-1. The powder X-ray diffraction pattern indicates that the material contains both MCM-41 and MFI structures. The mixed phase contains framework Ti species and more atomic order within its walls than Ti-doped MCM-41. [Pg.168]


See other pages where Oxidations of cyclohexane is mentioned: [Pg.16]    [Pg.241]    [Pg.168]    [Pg.425]    [Pg.263]    [Pg.86]    [Pg.217]    [Pg.243]    [Pg.94]    [Pg.97]    [Pg.99]    [Pg.374]    [Pg.10]    [Pg.30]    [Pg.249]    [Pg.253]    [Pg.1578]    [Pg.1847]    [Pg.269]    [Pg.110]    [Pg.18]   
See also in sourсe #XX -- [ Pg.249 ]

See also in sourсe #XX -- [ Pg.249 ]

See also in sourсe #XX -- [ Pg.176 , Pg.179 ]

See also in sourсe #XX -- [ Pg.460 ]

See also in sourсe #XX -- [ Pg.49 ]

See also in sourсe #XX -- [ Pg.183 ]




SEARCH



1.4- Cyclohexane oxide

Cobalt -catalyzed oxidation of cyclohexane

Cyclohexane oxidation

Direct Oxidation of Cyclohexane with Air

Of cyclohexane

Oxidation of Cyclohexane to Adipic Acid

Oxidation of cyclohexane and cyclopentane

Oxidative Dehydrogenation of Butane and Cyclohexane

Selective oxidation of cyclohexane

Special Features of Cyclohexane Oxidation

Special Features of Cyclohexane and p-Xylene Oxidations

© 2024 chempedia.info