Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystalline region

Transitions. Samples containing 50 mol % tetrafluoroethylene with ca 92% alternation were quenched in ice water or cooled slowly from the melt to minimise or maximize crystallinity, respectively (19). Internal motions were studied by dynamic mechanical and dielectric measurements, and by nuclear magnetic resonance. The dynamic mechanical behavior showed that the CC relaxation occurs at 110°C in the quenched sample in the slowly cooled sample it is shifted to 135°C. The P relaxation appears near —25°C. The y relaxation at — 120°C in the quenched sample is reduced in peak height in the slowly cooled sample and shifted to a slightly higher temperature. The CC and y relaxations reflect motions in the amorphous regions, whereas the P relaxation occurs in the crystalline regions. The y relaxation at — 120°C in dynamic mechanical measurements at 1 H2 appears at —35°C in dielectric measurements at 10 H2. The temperature of the CC relaxation varies from 145°C at 100 H2 to 170°C at 10 H2. In the mechanical measurement, it is 110°C. There is no evidence for relaxation in the dielectric data. [Pg.366]

Typical stress—strain curves are shown in Figure 3 (181). The stress— strain curve has three regions. At low strains, below about 10%, these materials are considered to be essentially elastic. At strains up to 300%, orientation occurs which degrades the crystalline regions causing substantial permanent set. [Pg.304]

Crystallinity. Generally, spider dragline and silkworm cocoon silks are considered semicrystalline materials having amorphous flexible chains reinforced by strong stiff crystals (3). The orb web fibers are composite materials (qv) in the sense that they are composed of crystalline regions immersed in less crystalline regions, which have estimates of 30—50% crystallinity (3,16). Eadier studies by x-ray diffraction analysis indicated 62—65% crystallinity in cocoon silk fibroin from the silkworm, 50—63% in wild-type silkworm cocoons, and lesser amounts in spider silk (17). [Pg.77]

This unusual behavior results from unsolvated crystalline regions in the PVC that act as physical cross-links. These allow the PVC to accept large amounts of solvent (plasticizers) in the amorphous regions, lowering its T to well below room temperature, thus making it mbbery. PVC was, as a result, the first thermoplastic elastomer (TPE). This mbber-like material has stable properties over a wide temperature range (32,138—140). [Pg.504]

Cellulose is the main component of the wood cell wall, typically 40—50% by weight of the dry wood. Pure cellulose is a polymer of glucose residues joined by 1,4-P-glucosidic bonds. The degree of polymerization (DP) is variable and may range from 700 to 10,000 DP or more. Wood cellulose is more resistant to dilute acid hydrolysis than hemiceUulose. X-ray diffraction indicates a partial crystalline stmcture for wood cellulose. The crystalline regions are more difficult to hydrolyze than the amorphous regions because removal of the easily hydrolyzed material has Htde effect on the diffraction pattern. [Pg.321]

At low relative humidities, adsorption is due to interaction of water with accessible hydroxyl groups. These are present on the lignin and on the carbohydrates ia the noncrystalline or poorly crystalline regions. The high differential heat of adsorption by dry wood, - 1.09 kJ/g (469 Btu/lb) water. [Pg.322]

Mechanical Properties. Although wool has a compHcated hierarchical stmcture (see Fig. 1), the mechanical properties of the fiber are largely understood in terms of a two-phase composite model (27—29). In these models, water-impenetrable crystalline regions (generally associated with the intermediate filaments) oriented parallel to the fiber axis are embedded in a water-sensitive matrix to form a semicrystalline biopolymer. The parallel arrangement of these filaments produces a fiber that is highly anisotropic. Whereas the longitudinal modulus of the fiber decreases by a factor of 3 from dry to wet, the torsional modulus, a measure of the matrix stiffness, decreases by a factor of 10 (30). [Pg.342]

Mercerized cellulose fibers have improved luster and do not shrink further. One of the main reasons for mercerizing textiles is to improve their receptivity to dyes. This improvement may result more from the dismption of the crystalline regions rather than the partial conversion to a new crystal stmcture. A good example of the fundamental importance of the particular crystal form is the difference in rate of digestion by bacteria. Bacteria from cattle mmen rapidly digest Cellulose I but degrade Cellulose II very slowly (69). Thus aHomorphic form can be an important factor in biochemical reactions of cellulose as well as in some conventional chemical reactions. [Pg.241]

Creep of polymers is a major design problem. The glass temperature Tq, for a polymer, is a criterion of creep-resistance, in much the way that is for a metal or a ceramic. For most polymers, is close to room temperature. Well below Tq, the polymer is a glass (often containing crystalline regions - Chapter 5) and is a brittle, elastic solid -rubber, cooled in liquid nitrogen, is an example. Above Tq the Van der Waals bonds within the polymer melt, and it becomes a rubber (if the polymer chains are cross-linked) or a viscous liquid (if they are not). Thermoplastics, which can be moulded when hot, are a simple example well below Tq they are elastic well above, they are viscous liquids, and flow like treacle. [Pg.193]

From a brief consideration of the properties of the above three polymers it will be realised that there are substantial differences between the crystallisation of simple molecules such as water and copper sulphate and of polymers such as polyethylene. The lack of rigidity, for example, of polyethylene indicates a much lower degree of crystallinity than in the simple molecules. In spite of this the presence of crystalline regions in a polymer has large effects on such properties as density, stiffness and clarity. [Pg.49]

In the crystalline region isotactic polystyrene molecules take a helical form with three monomer residues per turn and an identity period of 6.65 A. One hundred percent crystalline polymer has a density of 1.12 compared with 1.05 for amorphous polymer and is also translucent. The melting point of the polymer is as high as 230°C. Below the glass transition temperature of 97°C the polymer is rather brittle. [Pg.454]

The ease with which a polymer will form into crystalline regions depends on the structure of the molecular chain. It can be seen, for example, that if the polyethylene molecule has a high degree of branching then it makes it difficult to form into the ordered fashion shown in Fig. A.9. Also, if the side... [Pg.423]

Solid cellulose forms a microcrystalline structure with regions of high order, i.e., crystalline regions, and regions of low order that are amorphous. Naturally occurring cellulose (cellulose I) crystallizes monoclinic sphenodic. The molecular chains lay in the fiber direction ... [Pg.792]


See other pages where Crystalline region is mentioned: [Pg.263]    [Pg.326]    [Pg.125]    [Pg.149]    [Pg.221]    [Pg.248]    [Pg.267]    [Pg.302]    [Pg.480]    [Pg.191]    [Pg.192]    [Pg.77]    [Pg.344]    [Pg.456]    [Pg.456]    [Pg.314]    [Pg.72]    [Pg.483]    [Pg.190]    [Pg.54]    [Pg.290]    [Pg.16]    [Pg.202]    [Pg.318]    [Pg.320]    [Pg.451]    [Pg.30]    [Pg.48]    [Pg.421]    [Pg.422]    [Pg.424]    [Pg.138]    [Pg.292]    [Pg.495]    [Pg.794]    [Pg.840]    [Pg.840]    [Pg.841]   
See also in sourсe #XX -- [ Pg.177 , Pg.359 ]

See also in sourсe #XX -- [ Pg.29 ]

See also in sourсe #XX -- [ Pg.20 ]

See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.177 , Pg.359 ]

See also in sourсe #XX -- [ Pg.18 ]




SEARCH



© 2024 chempedia.info