Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmosis flow rates

Reverse osmosis/electrodeionization (RO/EDI) plants are available in modular form to suit any desired input-output water quality and flow rate. A RO/EDI system should be capable of producing high-purity water of perhaps 5 to 20 xS/cm conductivity (0.2-0.05 MO/cm resistance). By providing a second EDI stack in series, it is possible to achieve even higher quality of up to 0.055 xS/cm conductivity (18.2 Mfl/cm resistance). [Pg.375]

The reverse osmosis membranes were tested in the standard experimental set-up (10). The experiments were carried out at three different pressures 17.4, 40.8 and 102 bars the corresponding sodium chloride concentrations were 3500 ppm, 5000 ppm and 29000 ppm. Before the reverse osmosis runs, membranes were thermally shrunk for 10 minutes in water and subsequently pressurized at 15-20% higher pressures than those used during the reverse osmosis experiments. A feed flow rate of 400 ml/mln was used giving a mass transfer coefficient k = 40 x 10 cm/s on the high pressure side of the membrane. [Pg.237]

The detailed process design is familiar to students of chemical engineering, and includes specifying the source of the raw material water the equipment to be used, such as filtration, reverse osmosis, charcoal absorption, ozone treatment, ion exchanger, and pumps the processing conditions, such as flow rates and temperatures and the plant flow sheet. The detailed product design plan for this simplest of products includes the composition of this bottled water, with special attention to the concentrations of compounds such as sodium and carbon dioxide, suspended matter, and microbes, with special emphasis on the appearance and smell. [Pg.316]

Therefore, an effective water system is required. Nowadays, several techniques can be used to obtain water of high pharmaceutical quality. These include ionexchange treatment, reverse osmosis, distillation, electrodialysis, and ultrafiltration. However, there is no single optimum system for producing high-purity water, and selection of the final system is dependent on factors such as the quality of raw water, intent of its use, flow rate, and costs. In the pharmaceutical industry, the different water classes normally encountered are well water, potable water, purified water, and specially purified grades of water, such as water for injection (e.g., MilliQ water). [Pg.820]

Electro-osmosis in a capillary. In the local model of the previous section we assumed for the flow rate v the phenomenological generalized Darcy s law (6.3.3a) with constant coefficients. [Pg.237]

Reverse-Osmosis Experiments. All reverse-osmosis experiments were performed with continuous-flow cells. Each membrane was subjected to an initial pure water pressure of 2068 kPag (300 psig) for 2 h pure water was used as feed to minimize the compaction effect. The specifications of all the membranes in terms of the solute transport parameter [(Dam/ 6)Naci]> the pure water permeability constant (A), the separation, and the product rate (PR) are given in Table I. These were determined by Kimura-Sourirajan analysis (7) of experimental reverse-osmosis data with sodium chloride solution at a feed concentration of 0.06 m unless otherwise stated. All other reverse-osmosis experiments were carried out at laboratory temperature (23-25 °C), an operating pressure of 1724 kPag (250 psig), a feed concentration of 100 ppm, and a feed flow rate >400 cmVmin. The fraction solute separation (/) is defined as follows ... [Pg.145]

A conventional wastewater treatment system with an average flow rate of 160,000 gpd produces effluent suitable for NPDES discharge. Metal hydroxide sludges are dewatered in a 15 cu. ft filter press producing more than one half ton of filter cake per day. The filter cake is further dewatered in a 7 cu. ft, batch-type sludge dryer. Based upon recommendations by their consultant, the firm also uses the sludge dryer to dehydrate nickel strip solutions. Two reverse osmosis systems are used for partial nickel recovery. Trivalent chromium is recovered by drag-out control and evaporation. [Pg.265]

We can observe electro-osmosis directly with an optical microscope using liquids, which contain small, yet visible, particles as markers. Most measurements are made in capillaries. An electric field is tangentially applied and the quantity of liquid transported per unit time is measured (Fig. 5.13). Capillaries have typical diameters from 10 fim up to 1 mm. The diameter is thus much larger than the Debye length. Then the flow rate will change only close to a solid-liquid interface. Some Debye lengths away from the boundary, the flow rate is constant. Neglecting the thickness of the electric double layer, the liquid volume V transported per time is... [Pg.75]

Direct flow filtration has certain Umitations. The flux (filtration flow rate per unit membrane area) decreases over time as the process continues because the filtering media is loaded with more contaminant particles, as illustrated in Figure 14.1. Moreover, when the concentration of the contaminant in the feed stream is high, the filtering media must be replaced very frequently, which can be economically impractical. Also when the contaminant matter to be separated is small in size, requiring ultrafiltration or reverse osmosis membranes with much smaller pores, then direct filtration is less feasible as the flux declines very rapidly over time, again requiring frequent filter replacement. [Pg.411]

FIGURE 41.10 Flow rate and conductivities obtained with the Toray reverse osmosis membrane. [Pg.1097]

It is required to design a reverse osmosis unit to process 2500 mVh of seawater at 25°C containing 3.5 wt% dissolved salts, and produce purified water with 0.05 wt% dissolved salts. The pressure will be maintained at 135 atm on the residue side and 3.5 atm on the permeate side, and the temperature on both sides at 25°C. The dissolved salts may be assumed to be NaCl. With the proposed membrane, the salt permeance is 8.0 x 10 m/h and the water permeance is 0.085 kg/rn-.h.atrn. The density of the feed seawater is 1020 kg/m ( of the permeate, 997.5 kg/nv and of the residue (with an estimated salt content of 5 wt%), 1035 kg/rnc Assuming a perfect mixing model and neglecting the mass transfer resistances, determine the required membrane area and calculate the product flow rates and compositions. [Pg.624]

The general experimental procedure was similar to that reported in the literature (25). The six flow type reverse osmosis cells were connected in series and were constructed in a design similar to that reported by Sourirajan (25). The cells were placed in a constant temperature box and the system was controlled to 25 1°C. The feed flow rate was maintained constant at 400... [Pg.298]

Reverse osmosis memhraaes. The exceptionally high moisture regain observed with polybenzimidazole fibers prompted a team at Celanese Research Co to investigate the utility of polybenzimidazole films as semipermeable membranes for reverse osmosis processes, such as sea water desalination66,94). A continuous process was devised in which films were cast from solution into a water precipitation bath. The films were tested for reverse osmosis performance with a saline solution (0.5% Nad) as feed stream at a pressure of 4.14 MN m-2 and a flow rate of 19.8 m min-1. Salt rejection was ca. 95% throughout. A cellulose acetate film of the type commonly used as a reverse osmosis standard was tested under the same conditions for comparison. Table 8 shows the results. [Pg.37]

Figure 5.16, adapted from Kurihara,79 80 shows a comparison of several types of commercial reverse osmosis membranes in terms of salt rejection and permeate flow rate under seawater test conditions (35,000 ppm, 800 psi, 25°C). This chart emphasizes the capability of PEC-1000 to provide complete single-stage seawater desalting. In a test at Toray s Ehime desalination test facility on 42,000 ppm seawater (equivalent to Red Sea salinity), PEC-1000 spiral elements operated at 35% recovery produced a permeate having an average salinity of only 220 ppm, well below WHO standards. Average salt rejection was 99.5%. [Pg.336]

If an ideal semipermeable membrane separates an aqueous organic or inorganic solution from pure water, the tendency to equalize concentrations would result in the flow of the pure water through the membrane to the solution. The pressure needed to stop the flow is called the osmotic pressure. If the pressure on the solution is increased beyond the osmotic pressure, then the flow would be reversed and the fresh water would pass from the solution through the membrane, whence the name reverse osmosis. In actual reverse osmosis systems the applied pressure must be sufficient to overcome the osmotic pressure of the solution and to provide the driving force for adequate flow rates. [Pg.97]

Cellulose acetate (CA), the acetate ester of cellulose, is one of the most commonly used biocompatible materials for the preparation of semi-permeable membranes to be used for dialysis, ultrafiltration, and reverse osmosis. CA membranes have very low absorption characteristics and thermal stability with high flow rates. Cellulose-based materials are also widely used in the bio-pharmaceutical industry as the matrix for adsorbent beads and membranes. Moreover, CA nanofibers can be used as carrier for delivery of vitamins or pharmaceutical products [15]. [Pg.563]

Immobilized Liquid Membranes. A pilot plant study of the recovery of ethylene and propylene from a polypropylene reactor off-gas stream was presented by Hughes et al. (23). Aqueous solutions of Ag Ion were Immobilized In the pore structure of commercial reverse osmosis hollow fiber modules. The pilot plant operated at feed pressures of 414-827 kPa, feed flow rates of 1.42-4.25 m /h at STP, and sweep flow rates of 3.79 10" - 0.114 m /h hexane. Permeate streams with propylene concentrations In excess of 98 mole % were observed in pilot plant operation with modules containing 22.3 to 37.2 m membrane area. [Pg.118]


See other pages where Osmosis flow rates is mentioned: [Pg.82]    [Pg.130]    [Pg.373]    [Pg.376]    [Pg.86]    [Pg.260]    [Pg.262]    [Pg.50]    [Pg.69]    [Pg.21]    [Pg.100]    [Pg.53]    [Pg.666]    [Pg.1748]    [Pg.37]    [Pg.253]    [Pg.690]    [Pg.272]    [Pg.49]    [Pg.87]    [Pg.907]    [Pg.186]    [Pg.216]    [Pg.421]    [Pg.1438]    [Pg.159]    [Pg.968]    [Pg.737]    [Pg.907]    [Pg.832]   
See also in sourсe #XX -- [ Pg.631 ]

See also in sourсe #XX -- [ Pg.631 ]

See also in sourсe #XX -- [ Pg.631 ]

See also in sourсe #XX -- [ Pg.631 ]




SEARCH



Electro-osmosis flow rate

Osmosis

Reverse Osmosis System Flow Rating

Reverse osmosis flow rate

Reverse osmosis salt flow rate

© 2024 chempedia.info