Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reverse osmosis types

Consequently further studies are required to look for different types of membranes, such as for instance higher rejection NF-type or low rejection reverse-osmosis-type membranes, by taking into account the relatively low molecular weight of the drugs studied. [Pg.356]

Among a number of different projects, IAEA is considering floating power desalination complexes, in particular those with tiie marine nuclear reactor plant of KLT-40 type and desalination facilities of distillation and reverse-osmosis types. The appropriate distillation facilities in Russia are designed by the Sverd Nil ChimMash Institute (Ecaterinburg), while reverse-osmosis facilities are produced in particular by the Canadian firm "Candesal Inc". [Pg.20]

In general there are three main types of hoUow-fiber flow configurations. In the most common, for reverse osmosis and ultrafiltration, the feed... [Pg.152]

Fig. 23. Two types of hollow-fiber modules used for gas separation, reverse osmosis, and ultrafiltration applications, (a) Shell-side feed modules are generally used for high pressure appHcations up to - 7 MPa (1000 psig). Fouling on the feed side of the membrane can be a problem with this design, and pretreatment of the feed stream to remove particulates is required, (b) Bore-side feed modules are generally used for medium pressure feed streams up to - 1 MPa (150 psig), where good flow control to minimise fouling and concentration polarization on the feed side of the membrane is desired. Fig. 23. Two types of hollow-fiber modules used for gas separation, reverse osmosis, and ultrafiltration applications, (a) Shell-side feed modules are generally used for high pressure appHcations up to - 7 MPa (1000 psig). Fouling on the feed side of the membrane can be a problem with this design, and pretreatment of the feed stream to remove particulates is required, (b) Bore-side feed modules are generally used for medium pressure feed streams up to - 1 MPa (150 psig), where good flow control to minimise fouling and concentration polarization on the feed side of the membrane is desired.
Reverse Osmosis. Membranes are used for the separation of smaller components (<500 daltons). They have smaller pore space and are tighter than those used for ultrafiltration. High pressure pumps, usually of the positive piston or multistage centrifugal type, provide pressures up to 4.14 MPa (600 psi). [Pg.368]

Reverse osmosis models can be divided into three types irreversible thermodynamics models, such as Kedem-Katchalsky and Spiegler-Kedem models nonporous or homogeneous membrane models, such as the solution—diffusion (SD), solution—diffusion—imperfection, and extended solution—diffusion models and pore models, such as the finely porous, preferential sorption—capillary flow, and surface force—pore flow models. Charged RO membrane theories can be used to describe nanofiltration membranes, which are often negatively charged. Models such as Dorman exclusion and the... [Pg.146]

The success of a reverse osmosis process hinges direcdy on the pretreatment of the feed stream. If typical process streams, without pretreatment to remove partially some of the constituents Hsted, were contacted with membranes, membrane life and performance would be unacceptable. There is no single pretreatment for all types of foulants. Pretreatment methods range from pH control, adsorption (qv), to filtration (qv), depending on the chemistry of the particular foulant. Some of the pretreatment methods for each type of foulant are as foUow (43—45) ... [Pg.150]

Feed characteri2ation, particularly for nondesalination appHcatioas, should be the first and foremost objective in the design of a reverse osmosis plant. This involves the determination of the type and concentration of the main solutes and foulants in the stream, temperature, pH, osmotic pressure, etc. Once the feed has been characteri2ed, a reaHstic process objective can be defined. In most cases, some level of pretreatment is needed to reduce the number and concentration of foulants present in the feed stream. Pretreatment necessitates the design of processes other than the RO module, thus the overaH process design should use the minimum pretreatment necessary to meet the process objective. Once the pretreatment steps have been determined and the final feed stream defined, the RO module can be selected. [Pg.155]

Given the first type of simulation, it is advantageous to be able to design a system of RO modules that can achieve the process objective at a minimal cost. A model has been iategrated iato a process simulation program to predict the stream matrix for a reverse osmosis process (132). In the area of waste minimization, the proper placement of RO modules is essential for achieving minimum waste at a minimum cost. Excellent details on how to create an optimal network of RO modules is available (96). [Pg.156]

The pressure to be used for reverse osmosis depends on the salinity of the feedwater, the type of membrane, and the desired product purity. It ranges from about 1.5 MPa for low feed concentrations or high flux membranes, through 2.5—4 MPa for brackish waters, and to 6—8.4 MPa for seawater desalination. In desalination of brackish or sea water, typical product water fluxes through spiral-wound membranes are about 600—800 kg/m /d at a recovery ratio RR of 15% and an average salt rejection of 99.5%, where... [Pg.250]

Kev>erse Osmosis (RO) Membranes A type of membrane system for treating oily wastewater is currently undergoing commercialization by Bend Research, Inc. The system uses a tube-side feed module that yields high fluxes while being able to handle high-sohds-content waste streams (Ref. 25). Another type of reverse osmosis technique is being designed to yield ultrapurified HF recovered from... [Pg.2195]

The semi-permeable membrane is the heart of the reverse osmosis separation process. Semi-permeable membranes for reverse osmosis are broadly divided into two types. The earhest practical membrane was of the asymmetric type [3-6]. It consisted of an osmotically active surface layer with very small pores (less than 1 nm) with a thickness of 30-100 nm. This layer was physically supported on a porous substructure, whose porosity increased with distance from the surface layer. In such a membrane, the... [Pg.778]

The electrical conductivity of the water is critical to the correct operation of this type of boiler, and the precise level varies with design and power requirements. However, the conductivity is always relatively low (often specifications require a level of below 15-50 p,S/cm), so demineralized or reverse-osmosis (RO) quality FW is usually specified. [Pg.28]

There are three major types of membrane processes, each with different physical means of operation reverse osmosis (RO), ultrafiltration (UF), and microfiltration (MF). In addition, electrodialysis (ED) is also considered to be a membrane process. [Pg.623]

This method is used mainly to remove high-molecular-weight materials such as proteins, colloids, viruses, and bacteria. The same types of problem encountered with the use of reverse osmosis membranes are encountered here, and the proposed solutions are the same. [Pg.445]

Membrane equipment for industrial scale operation of microfiltration, ultrafiltration and reverse osmosis is supplied in the form of modules. The area of membrane contained in these basic modules is in the range 1-20 m2. The modules may be connected together in series or in parallel to form a plant of the required performance. The four most common types of membrane modules are tubular, flat sheet, spiral wound and hollow fibre, as shown in Figures 8.9-8.12. [Pg.455]

Mitrovic and Knezic (1979) also prepared ultrafiltration and reverse osmosis membranes by this technique. Their membranes were etched in 5% oxalic acid. The membranes had pores of the order of 100 nm, but only about 1.5 nm in the residual barrier layer (layer AB in Figure 2.15). The pores in the barrier layer were unstable in water and the permeability decreased during the experiments. Complete dehydration of alumina or phase transformation to a-alumina was necessary to stabilize the pore structure. The resulting membranes were found unsuitable for reverse osmosis but suitable for ultrafiltration after removing the barrier layer. Beside reverse osmosis and ultrafiltration measurements, some gas permeability data have also been reported on this type of membranes (Itaya et al. 1984). The water flux through a 50/im thick membrane is about 0.2mL/cm -h with a N2 flow about 6cmVcm -min-bar. The gas transport through the membrane was due to Knudsen diffusion mechanism, which is inversely proportional to the square root of molecular mass. [Pg.48]

The membranes used for pervaporation are similar to reverse osmosis membranes, i.e. both are composite membranes consisting of a very thin dense permselective film on top of a nonselective porous support. In pervaporation, however, the membrane is highly swollen at the feed side and relatively dry at the permeate side. Two different types of pervaporation membranes based on polymeric materials were developed at about the same time in the early 1980s [31] ... [Pg.531]


See other pages where Reverse osmosis types is mentioned: [Pg.67]    [Pg.99]    [Pg.67]    [Pg.99]    [Pg.533]    [Pg.72]    [Pg.150]    [Pg.152]    [Pg.153]    [Pg.155]    [Pg.385]    [Pg.63]    [Pg.73]    [Pg.80]    [Pg.153]    [Pg.83]    [Pg.163]    [Pg.226]    [Pg.11]    [Pg.382]    [Pg.175]    [Pg.2194]    [Pg.361]    [Pg.372]    [Pg.369]    [Pg.369]    [Pg.434]    [Pg.562]    [Pg.438]    [Pg.439]    [Pg.464]    [Pg.468]    [Pg.527]    [Pg.21]    [Pg.17]   
See also in sourсe #XX -- [ Pg.211 ]




SEARCH



Osmosis

Osmosis reversed

Reverse osmosis

Reverse osmosis membrane types

Seawater reverse osmosis types

© 2024 chempedia.info