Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical spectroscopy in a pulsed

Most ion-molecule techniques study reactivity at pressures below 1000 Pa however, several techniques now exist for studying reactions above this pressure range. These include time-resolved, atmospheric-pressure, mass spectrometry optical spectroscopy in a pulsed discharge ion-mobility spectrometry [108] and the turbulent flow reactor [109]. [Pg.813]

D. Optical Spectroscopy in a Pulsed Electrical Discharge (OSPED)...237... [Pg.219]

Note The acronyms used here are OSPED (optical spectroscopy in a pulsed electrical discharge), FAMS (flowing afterglow mass spectrometry), SIFT (selected ion flow tube), TRAPI (time-resolved atmospheric pressure ionization mass spectrometry), PHPMS (pulsed high-pressure ionization mass spectrometry), ICRMS (ion cyclotron resonance mass spectrometry), and ADO (averaged dipole orientation collision rate theory). [Pg.254]

Two distinct primary transients have been observed by optical spectroscopy in its pulse radiolysis [54]. One of these is not affected by O2 and has been attributed to an A-centered radical cation, A/ N-EDTA , directly bridged to the second EDTA nitrogen. Using strong reductants as probes, e.%. N,N,N N -tetramethylphenylenediamine, G(A/ A/ -EDTA) = 1.6 x 10 mol J has been obtained. Besides generating iV iV-EDTA, the OH radicals produce C-centered radicals by H-abstraction. These have reducing properties and are rapidly oxidized by tetranitromethane, giving rise to nitroform anion, G(NF ) = 4.2 x 10 mol J . The C-centered radicals react rapidly k = 7.6 x 10 dm mol s ) with O2, and subsequent fast 02 elimination. The Schiff bases thus formed hydrolyze to the final products. [Pg.664]

Fig. 3.5. Experimental apparatus for time-resolved THz transmission spectroscopy. The sample is excited with a visible laser pulse delivered by delay line 3. A singlecycle THz electric-field transient probes the polarization response of the sample after time delay tv scanned by delay line 1. The transmitted THz amplitude is monitored via ultrabroadband electro-optic sampling in a THz receiver as a function of time T scanned by delay line 2. From [13]... Fig. 3.5. Experimental apparatus for time-resolved THz transmission spectroscopy. The sample is excited with a visible laser pulse delivered by delay line 3. A singlecycle THz electric-field transient probes the polarization response of the sample after time delay tv scanned by delay line 1. The transmitted THz amplitude is monitored via ultrabroadband electro-optic sampling in a THz receiver as a function of time T scanned by delay line 2. From [13]...
Already in the early days of optical pxunping spectroscopy it has been shown that modulated optical light can create atomic coherence between close lying atomic substates and therefore can be used to measure the energy splitting between these states [l]. In this context optical pvunping with a pulse train has often been mentioned but only scarcely applied for quantitative measurements. [Pg.97]

In principle, the theory of nonlinear spectroscopy with femtosecond laser pulses is well developed. A comprehensive and up-to-date exposition of nonlinear optical spectroscopy in the femtosecond time domain is provided by the monograph of Mukamel. ° For additional reviews, see Refs. 7 and 11-14. While many theoretical papers have dealt with the analysis or prediction of femtosecond time-resolved spectra, very few of these studies have explicitly addressed the dynamics associated with conical intersections. In the majority of theoretical studies, the description of the chemical dynamics is based on rather simple models of the system that couples to the laser fields, usually a few-level system or a set of harmonic oscillators. In the case of condensed-phase spectroscopy, dissipation is additionally introduced by coupling the system to a thermal bath, either at a phenomenological level or in a more microscopic maimer via reduced density-matrix theory. [Pg.741]

We conclude this section by discussing techniques which can be considered to be optical analogues of the Ramsey fringe technique, first introduced for the RF region (Sect. 7.1.2). We first consider the case of two-photon spectroscopy with a pulsed laser. In Fig. 9.65 (top) the inevitable Fourier broadening of a short pulse is illustrated. [Pg.373]

The use of laser ablation coupled with RIMS detection of sputtered neutrals has a number of interesting advantages and applications. The RIMS technique offers elemental or molecular selectivity of optical spectroscopy in combination with extremely sensitive detection capabilities of an MS system. In a two-step laser desorption/resonant multiphoton ionisation process a pulsed CO2 laser with emission at 10.6 /xm is focused on a sample and serves as the desorption beam. The output of a frequency-quadrupled NdiYAG laser (266 nm) softly ionises the desorbed species. The use of this... [Pg.368]

Carter, G.M., Thakur, M.K., Chen, Y.J., Hryniewicz, J.V. (1985) "Time and wavelength resolved nonlinear optical spectroscopy of a polydiacetylene in the solid state using picosecond dye laser pulses.", Appl. Phys. Lett. 47, 457-459. [Pg.362]

These limitations have recently been eliminated using solid-state sources of femtosecond pulses. Most of the femtosecond dye laser teclmology that was in wide use in the late 1980s [11] has been rendered obsolete by tliree teclmical developments the self-mode-locked Ti-sapphire oscillator [23, 24, 25, 26 and 27], the chirped-pulse, solid-state amplifier (CPA) [28, 29, 30 and 31], and the non-collinearly pumped optical parametric amplifier (OPA) [32, 33 and 34]- Moreover, although a number of investigators still construct home-built systems with narrowly chosen capabilities, it is now possible to obtain versatile, nearly state-of-the-art apparatus of the type described below Ifom commercial sources. Just as home-built NMR spectrometers capable of multidimensional or solid-state spectroscopies were still being home built in the late 1970s and now are almost exclusively based on commercially prepared apparatus, it is reasonable to expect that ultrafast spectroscopy in the next decade will be conducted almost exclusively with apparatus ifom conmiercial sources based around entirely solid-state systems. [Pg.1969]

In addition to the surface/interface selectivity, IR-Visible SFG spectroscopy provides a number of attractive features since it is a coherent process (i) Detection efficiency is very high because the angle of emission of SFG light is strictly determined by the momentum conservation of the two incident beams, together with the fact that SFG can be detected by a photomultiplier (PMT) or CCD, which are the most efficient light detectors, because the SFG beam is in the visible region, (ii) The polarization feature that NLO intrinsically provides enables us to obtain information about a conformational and lateral order of adsorbed molecules on a flat surface, which cannot be obtained by traditional vibrational spectroscopy [29-32]. (iii) A pump and SFG probe measurement can be used for an ultra-fast dynamics study with a time-resolution determined by the incident laser pulses [33-37]. (iv) As a photon-in/photon-out method, SFG is applicable to essentially any system as long as one side of the interface is optically transparent. [Pg.73]

With development of ultrashort pulsed lasers, coherently generated lattice dynamics was found, first as the periodic modulation in the transient grating signal from perylene in 1985 by De Silvestri and coworkers [1], Shortly later, similar modulation was observed in the reflectivity of Bi and Sb [2] and of GaAs [3], as well as in the transmissivity of YBCO [4] by different groups. Since then, the coherent optical phonon spectroscopy has been a simple and powerful tool to probe femtosecond lattice dynamics in a wide range of solid... [Pg.23]

To demonstrate the versatility of nonlinear microspectroscopy with shaped broadband laser pulses, TPF is chosen as a second example. Remember that TPF can be implemented only by programming the pulse shaper differently and sampling a different wavelength range of the signal spectrum in the same experimental setup. TPF is so far probably the most widely applied nonlinear optical spectroscopy... [Pg.190]

Written by an international panel of experts, this volume begins with a comparison of nonlinear optical spectroscopy and x-ray crystallography. The text examines the use of multiphoton fluorescence to study chemical phenomena in the skin, the use of nonlinear optics to enhance traditional optical spectroscopy, and the multimodal approach, which incorporates several spectroscopic techniques in one instrument. Later chapters explore Raman microscopy, third-harmonic generation microscopy, and nonlinear Raman microspectroscopy. The text explores the promise of beam shaping and the use of a broadband laser pulse generated through continuum generation and an optical pulse shaper. [Pg.279]


See other pages where Optical spectroscopy in a pulsed is mentioned: [Pg.255]    [Pg.255]    [Pg.273]    [Pg.159]    [Pg.604]    [Pg.409]    [Pg.341]    [Pg.694]    [Pg.128]    [Pg.930]    [Pg.4213]    [Pg.125]    [Pg.275]    [Pg.448]    [Pg.1968]    [Pg.388]    [Pg.112]    [Pg.72]    [Pg.159]    [Pg.77]    [Pg.158]    [Pg.534]    [Pg.537]    [Pg.106]    [Pg.140]    [Pg.169]    [Pg.240]    [Pg.241]    [Pg.294]    [Pg.279]    [Pg.15]    [Pg.393]    [Pg.879]   


SEARCH



A optical spectroscopy

Optical spectroscopy

Optical spectroscopy in a pulsed electrical discharge

© 2024 chempedia.info