Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductors optical properties

Cohen M L and Cheiikowsky J R 1989 Electronic Structure and Optical Properties of Semiconductors 2nd edn (Springer)... [Pg.135]

As an indication of the types of infonnation gleaned from all-electron methods, we focus on one recent approach, the FLAPW method. It has been used to detennine the band stmcture and optical properties over a wide energy range for a variety of crystal stmctures and chemical compositions ranging from elementary metals [ ] to complex oxides [M], layered dichalcogenides [, and nanoporous semiconductors The k p fonnulation has also enabled calculation of the complex band stmcture of the A1 (100) surface... [Pg.2214]

Some semiconductors with compositions close to ABq Gq are known to become ordered. This results in changes in the gap, and electrical and optical properties, compared to random alloys of the same composition. [Pg.2880]

We begin our discussion of nanocrystals in diis chapter widi die most challenging problem faced in die field die preparation and characterization of nanocrystals. These systems present challenging problems for inorganic and analytical chemists alike, and die success of any nanocrystal syndiesis plays a major role in die furdier quantitative study of nanocrystal properties. Next, we will address die unique size-dependent optical properties of bodi metal and semiconductor nanocrystals. Indeed, it is die striking size-dependent colours of nanocrystals diat first attracted... [Pg.2899]

This section will outline the simplest models for the spectra of both metal and semiconductor nanocrystals. The work described here has illustrated that, in order to achieve quantitative agreement between theory and experiment, a more detailed view of the molecular character of clusters must be incoriDorated. The nature and bonding of the surface, in particular, is often of crucial importance in modelling nanocrystal optical properties. Wlrile this section addresses the linear optical properties of nanocrystals, both nonlinear optical properties and the photophysics of these systems are also of great interest. The reader is referred to the many excellent review articles for more in-depth discussions of these and other aspects of nanocrystal optical properties [147, 148, 149, 150, 151, 152, 153 and 1541. [Pg.2908]

The study of organic semiconductors and conductors is highly iaterdisciplinary, involving the fields of chemistry, soHd-state physics, engineering, and biology. This article provides a treatment of the theoretical aspects of organic semiconductors as well as an overview of recent advances ia the field and the uses of these materials based on their conductive and optical properties. [Pg.236]

The polysdanes are normally electrical insulators, but on doping with AsF or SbF they exhibit electrical conductivity up to the levels of good semiconductors (qv) (98,124). Conductivities up to 0.5 (H-cm) have been measured. However, the doped polymers are sensitive to air and moisture thereby making them unattractive for practical use. In addition to semiconducting behavior, polysilanes exhibit photoconductivity and appear suitable for electrophotography (qv) (125—127). Polysdanes have also been found to exhibit nonlinear optical properties (94,128). [Pg.263]

Bina Selenides. Most biaary selenides are formed by beating selenium ia the presence of the element, reduction of selenites or selenates with carbon or hydrogen, and double decomposition of heavy-metal salts ia aqueous solution or suspension with a soluble selenide salt, eg, Na2Se or (NH 2S [66455-76-3]. Atmospheric oxygen oxidizes the selenides more rapidly than the corresponding sulfides and more slowly than the teUurides. Selenides of the alkah, alkaline-earth metals, and lanthanum elements are water soluble and readily hydrolyzed. Heavy-metal selenides are iasoluble ia water. Polyselenides form when selenium reacts with alkah metals dissolved ia hquid ammonia. Metal (M) hydrogen selenides of the M HSe type are known. Some heavy-metal selenides show important and useful electric, photoelectric, photo-optical, and semiconductor properties. Ferroselenium and nickel selenide are made by sintering a mixture of selenium and metal powder. [Pg.332]

As is to be expected, inherent disorder has an effect on electronic and optical properties of amorphous semiconductors providing for distinct differences between them and the crystalline semiconductors. The inherent disorder provides for localized as well as nonlocalized states within the same band such that a critical energy, can be defined by distinguishing the two types of states (4). At E = E, the mean free path of the electron is on the order of the interatomic distance and the wave function fluctuates randomly such that the quantum number, k, is no longer vaHd. For E < E the wave functions are localized and for E > E they are nonlocalized. For E > E the motion of the electron is diffusive and the extended state mobiHty is approximately 10 cm /sV. For U <, conduction takes place by hopping from one localized site to the next. Hence, at U =, )J. goes through a... [Pg.357]

The opportunity to synthesize new conjugated polymers with improved properties began to attract the attention of a larger number of synthetic chemists in the 1980s. Equally important was the subsequent development of stable, processible metallic polymers. As a result of these efforts, we now have a class of materials which exhibit a unique combination of properties the electronic and optical properties of metals and semiconductors in combination with the processing advantages and mechanical properties of polymers. [Pg.3]

The III-V and II-VI compounds refer to combination of elements that have two, three, five, or six valence electrons. They have semiconductor properties and are all produced by CVD either experimentally or in production. The CVD of these materials is reviewed in Ch. 12. Many of their applications are found in optoelectronics where they are used instead of silicon, since they have excellent optical properties (see Ch. 15). Generally silicon is not a satisfactory optical material, since it emits and absorbs radiation mostly in the range of heat instead of light. [Pg.356]

Optoelectronics is a discipline which combines optics and electronics. It deals with optical wavelengths from 0.20 im (ultraviolet) to 3 im (near infrared) as shown in Fig. 15.1. The properties of optoelectronic materials are a useful combination of electrical and semiconductor properties (electron action), with optical properties such as transmission, reflection, and absorption (phonon action). [Pg.384]

The m-V and II-VI semiconductor compounds have excellent optical properties and are the most important group of optoelectronic materials, which are all produced by CVD for many optoelectronic applications. The properties of these materials and their CVD reactions are reviewed in Ch. 12, Secs. 3.0 and 4.0 and Ch. 13, Sec. 6.0. It is possible to tailor the bandgap, by the proper combination of these materials, to suit any given application (See Fig. 13.2 of Ch. 13). [Pg.386]

Generation of nanoparticles under Langmuir monolayers and within LB films arose from earlier efforts to form nanoparticles within reverse micelles, microemulsions, and vesicles [89]. Semiconductor nanoparticles formed in surfactant media have been explored as photocatalytic systems [90]. One motivation for placing nanoparticles within the organic matrix of a LB film is to construct a superlattice of nanoparticles such that the optical properties of the nanoparticles associated with quantum confinement are preserved. If mono-layers of capped nanoparticles are transferred, a nanoparticle superlattice can be con-... [Pg.69]

Nanosize particles (e.g., metals, semiconductors, etc.) are of continuing interest because they possess fascinating catalytic, electronic, and optical properties. Larger particles decorated with smaller nanoparticles on their surface are of interest because of their potential use as heterogeneous catalysts and their relevance in electronic and optical sensor applications as well as surface-enhanced Raman scattering [39,72-75]. [Pg.512]

Wang Y (1991) Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc Chem Res 24 133-139... [Pg.53]

Romanov SG, Eokin AV, Tretijakov VV, Butko VY, Alperovich VI, Johnson NP, Sotomayor Torres CM (1996) Optical properties of ordered three-dimensional arrays of structurally confined semiconductors. J Cryst Growth 159 857-860... [Pg.204]

On the other hand, the nonlinear optical properties of nanometer-sized materials are also known to be different from the bulk, and such properties are strongly dependent on size and shape [11]. In 1992, Wang and Herron reported that the third-order nonlinear susceptibility, of silicon nanocrystals increased with decreasing size [12]. In contrast to silicon nanocrystals, of CdS nanocrystals decreased with decreasing size [ 13 ]. These results stimulated the investigation of the nonlinear optical properties of other semiconductor QDs. For the CdTe QDs that we are concentrating on, there have been few studies of nonresonant third-order nonlinear parameters. [Pg.155]

As for the size dependence of nonlinear optical properties of semiconductor nanomaterials, detailed investigations are required from both the theoretical and experimental points of view. [Pg.156]


See other pages where Semiconductors optical properties is mentioned: [Pg.99]    [Pg.514]    [Pg.99]    [Pg.514]    [Pg.2204]    [Pg.2501]    [Pg.2884]    [Pg.2903]    [Pg.2908]    [Pg.2908]    [Pg.2908]    [Pg.2911]    [Pg.164]    [Pg.192]    [Pg.18]    [Pg.366]    [Pg.367]    [Pg.308]    [Pg.396]    [Pg.174]    [Pg.402]    [Pg.197]    [Pg.337]    [Pg.497]    [Pg.163]    [Pg.166]    [Pg.173]    [Pg.90]    [Pg.98]    [Pg.405]    [Pg.6]    [Pg.191]    [Pg.155]    [Pg.162]   
See also in sourсe #XX -- [ Pg.96 ]

See also in sourсe #XX -- [ Pg.147 , Pg.166 , Pg.183 ]

See also in sourсe #XX -- [ Pg.145 , Pg.164 ]

See also in sourсe #XX -- [ Pg.148 , Pg.167 , Pg.184 ]




SEARCH



Nonlinear optical properties semiconductor nanoclusters

Optical Properties of Semiconductors

Optical Properties of Semiconductors (Polymers and Polymer Blends)

Optical properties semiconductor lasers

© 2024 chempedia.info