Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical properties bulk media

We now want to study the consequences of such a model with respect to the optical properties of a composite medium. For such a purpose, we will consider the phenomenological Lorentz-Drude model, based on the classical dispersion theory, in order to describe qualitatively the various components [20]. Therefore, a Drude term defined by the plasma frequency and scattering rate, will describe the optical response of the bulk metal or will define the intrinsic metallic properties (i.e., Zm((a) in Eq.(6)) of the small particles, while a harmonic Lorentz oscillator, defined by the resonance frequency, the damping and the mode strength parameters, will describe the insulating host (i.e., /((0) in Eq.(6)). [Pg.97]

The notion of homogeneity is not absolute all substances are inhomogeneous upon sufficiently close inspection. Thus, the description of the interaction of an electromagnetic wave with any medium by means of a spatially uniform dielectric function is ultimately statistical, and its validity requires that the constituents—whatever their nature—be small compared with the wavelength. It is for this reason that the optical properties of media usually considered to be homogeneous—pure liquids, for example—are adequately described to first approximation by a dielectric function. There is no sharp distinction between such molecular media and those composed of small particles each of which contains sufficiently many molecules that they can be individually assigned a bulk dielectric function we may consider the particles to be giant molecules with polarizabilities determined by their composition and shape. [Pg.214]

Fig. 3. Various situations encountered in ATR spectroscopy. Medium 1 represents the IRE. (a) Bulk rare (optically thin) medium 2. (b) Thin film with thickness d much less than the penetration depth dp. (c) General case with N layers of different optical properties and thickness. The electric field depicted schematically on the left decays exponentially into the rare medium. This situation applies for case (a). In the more general case (c), the electric field does not decay smoothly. Fig. 3. Various situations encountered in ATR spectroscopy. Medium 1 represents the IRE. (a) Bulk rare (optically thin) medium 2. (b) Thin film with thickness d much less than the penetration depth dp. (c) General case with N layers of different optical properties and thickness. The electric field depicted schematically on the left decays exponentially into the rare medium. This situation applies for case (a). In the more general case (c), the electric field does not decay smoothly.
The unique properties of dilute metal-ammonia solutions depend not upon the nature of the metal species, but upon the solvated electron common to all these solutions. Thus, the electron-in-a-cavity model (17, 19, 21) seems best suited to describe the species present in these solutions since the model is independent of the type of cation present. Jortner and his associates (15, 16) have extended this model by assuming that the cavity arises from polarization of the medium by the electron. The energy levels of the bound electrons are obtained by using a potential function containing the static and optical dielectric constants of the bulk medium as parameters. Using one-parameter hydrogen-like wave functions for the first two bound states of the electron, the total energy of the ith state is expressed as... [Pg.136]

Thus, if the wavelength of the light is much greater than the grain size, the long wavelength approximation and effective medium theory can be applied to determine the effective value of the composite dielectric constant and, consequently, describe composites optical properties. However, if the size of the structure is of the order of tens and even units of nanometers, then the effective medium approach is not applicable. Indeed, within this approximation, the effective permittivity of a composite is determined as a function of the permittivity for each composite component and, in turn, the nanocomposite components are characterized by the same tensor of permittivity as those used for bulk media. ... [Pg.208]

Doping, which involves the intentional incorporation of atoms or ions of suitable elements into host lattices, is one of the effective routes to endow electronic, magnetic, and optical properties of many functional materials. An excellent example is the ruby solid-state laser where the Cr -doped AI2O3 crystal is used as the gain medium. It is now generally anticipated that the performances of the bulk materials are more or less different to those of the same materials in... [Pg.211]

In this chapter, we will be describing different electro-optic techniques that have been developed specifically for measurement of the flexocoeffi-cients. In these techniques, an electric field is applied to a nematic liquid crystal in a cell with well-defined boundary treatments. The net torque on the medium, which involves dielectric, elastic and flexoelectric components, is set to zero both in the bulk and at the two surfaces in order to And the equilibrium director configuration if a DC field is applied. In AC techniques, the above torques are balanced with the viscous torque. The optical properties of the medium are in turn calculated for the distorted profiles and compared with experimental measurements. The flexoelectric, and in some... [Pg.38]

Next, the role of the external dielectric medium on the optical properties of these surface-confined nanoparticles is considered. Just as it is difficult to decouple the effects of size and shape from one another, the dielectric effects of the substrate and external dielectric medium (i.e., bulk solvent) are inextricably coupled because together they describe the entire dielectric environment surrounding the nanoparticles. The... [Pg.73]

As described in the article on the theory of surface plasmon resonance, surface plasmons create a surface-bound evanescent electromagnetic wave which propagates along the surface of an active medium (usually a thin metallic film), with the electric field intensity maximized at this surface and diminishing exponentially on both sides of the interface. As a consequence of this property, the phenomenon has been utilized extensively in studies of surfaces and of thin dielectric films deposited on the active medium. Although numerous other optical techniques have also been applied to such systems (e.g. ellipsometry, interferometry, spectrophotometry, and microscopy the surface plasmon resonance (SPR) method has some important advantages over all other optical techniques, as follows. The method utilizes a relatively simple optical system, it has a superior sensitivity, and the complete system of measurement is located on the side of the apparatus that is remote from the sample, and thus there is no optical interference from the bulk medium. Furthermore, the surfaces of the sample need no extra treatment to increase... [Pg.1128]

Thin layers of electrochemically deposited metals and thin polymer layers deposited on electrode surfaces can be conveniently studied by ellipsometry combined with other electrochemical experiments. Electrocrystallization of nickel was studied by Abyaneh, Visscher, and Barendrecht with ellipsometry and simultaneous amperometric measurements. The initial changes in A and ij/ showed nonlinear variations with the deposition time (Fig. 12), which is apparently abnormal, indicating a marked deviation of the optical properties of the deposited film from the bulk metal properties. The observed trend was explained by theoretical calculations using equations of effective medium theory (see Section IV.4 for effective medium theory) for hemispherical growth of the nucleation centers. The observed ellipsometry data clearly demonstrate that in the initial stage of nonuniform deposition the measured parameters, ij/ in particular, can change in a... [Pg.227]

P2(z) is the polarization in the transition layer and P3 is the polarization in the bulk of the transparent isotropic substrate. The y axis is chosen to be perpendicular to the plane of incidence. Since the polarization vector components P2j z) and P j are proportional to the same electric field components of the incident wave, the parameters jj do not depend on the amplitude of the external exciting field. Being calculated in the zeroth order in d / A, they do not depend on the wavelength of the light. These quantities therefore characterize the optical properties of the transient layer to first order in d / A. They are determined by the relative difference between the mean local field in the layer and the local field in the bulk medium. Therefore, Eqs (3.57) and (3.58) predict deviations from the two-phase Fresnel formulae even when there are no perturbations in the selvedge region, i.e., the surface is clean and the optical properties of atoms nearby the surface are identical with those in the bulk. [Pg.68]

The optical properties of a material have long been recognised as characteristics o the structure of that material. The information is especially of value vdien ctystal-line or hi y ordered samples are studied as one can relate the optical functions directly to the atomic or molecular array. With solutions or suspensions of macromolecules, order is generally only of very short range when compared with the molecular dimensions, as the molecules themselves adopt a random arrangement within the bulk of the medium, it is for this reason that optical methods are generally restricted to intramolecular information for such q stems. [Pg.62]


See other pages where Optical properties bulk media is mentioned: [Pg.134]    [Pg.1276]    [Pg.121]    [Pg.236]    [Pg.81]    [Pg.678]    [Pg.395]    [Pg.367]    [Pg.27]    [Pg.417]    [Pg.463]    [Pg.68]    [Pg.1276]    [Pg.1263]    [Pg.68]    [Pg.674]    [Pg.535]    [Pg.97]    [Pg.99]    [Pg.316]    [Pg.144]    [Pg.448]    [Pg.459]    [Pg.342]    [Pg.284]    [Pg.235]    [Pg.1129]    [Pg.64]    [Pg.217]    [Pg.235]    [Pg.341]    [Pg.71]    [Pg.198]    [Pg.20]    [Pg.445]    [Pg.20]    [Pg.3]    [Pg.349]   
See also in sourсe #XX -- [ Pg.2 , Pg.806 ]




SEARCH



Bulk Optical Properties

Bulk properties

Optical medium

© 2024 chempedia.info