Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefinic phenol esters

The first catalytic insertion of a C=C bond into an acyl CO bond was attained with Rh catalysts. Thus, the ort/io-substituted olefinic phenol esters with the quinoline chelating group (70) were converted into the )3-alkoxy ketones (72). The stabilization of the intermediate Rh-alkoxide by chelation (71) is a prerequisite for the reaction to occur. [Pg.387]

Phenol esters of a,(3-unsaturated carboxylic acids have an interesting reactivity due to the synthetic utility of the resulting hydroxychalcones (Scheme 19). This aspect will be illustrated in Section IV. However, from the basic point of view, it is worth mentioning that the cis or trans configuration of the olefinic part of the acyl moiety can have a marked influence on the photochemical reactivity of the ester. When para-methoxyphenyl fumarates are irradiated, the normal ortho-rearranged products are obtained. By contrast, irradiation of para-me-thoxyphenyl maleates does not lead to rearrangement. Instead, cyclization products are obtained (Scheme 20). [Pg.68]

Fig (14) Olefin (107) has been converted to cyclic ether (114) by standard reactions. Its transformation to enone (115) is accomplished by annelation with methyl vinyl ketone and heating the resulting diketone with sodium hydride in dimethoxyethane. The ketoester (116) is subjected to Grignard reaction with methyllithium, aromatization and methylation to obtain the cyclic ether (117). Its transformation to phenolic ester (119) has been achieved by reduction, oxidation and esterification and deoxygenation. [Pg.195]

Crafts process is to generate carbonium ions from the alkyl or acyl halides. It would be expected, then, that a number of other combinations of starting materials and reagents which lead to carbonium ions should be capable of effecting acylation or alkylation. Indeed we find that olefins (p. 35), alcohols (p. 36), ethers (p. 36), and esters (p. 37) can be used as starting materials for aromatic alkylation reactions in the presence of such catalysts as boron trifluoride, sulfuric acid, or anhydrous hydrogen fluoride.69 Acylations can be carried out with acids (p. 37),64 acid halides (p. 230), and acid anhydrides (p. 37). The Fries reaction65 (in which phenolic esters are converted to hydroxy aromatic ketones by means of aluminum chloride) appears to be an example of a typical acylation reaction in which the ester itself acts as the source of an acyl carbonium ion ... [Pg.262]

Typical analyses include the detection and determination of paraffins, aromatics, olefins, acetylenes, aldehydes, ketones, carboxylic acids, phenols, esters, ethers, amines, sulfur compounds, halides, and so on. From the IR spectrum, it is possible to distinguish one polymer from another or determine the composition of mixed polymers or identify the solvents in paints. Atmospheric pollutants can be identified while still in the atmosphere. Another interesting application is the examination of old paintings and artifacts. It is possible to identify the varnish used on the painting and the textile comprising the canvas, as well as the pigments in the paint. From this information. [Pg.287]

PMMA is not affected by most inorganic solutions, mineral oils, animal oils, low concentrations of alcohols paraffins, olefins, amines, alkyl monohahdes and ahphatic hydrocarbons and higher esters, ie, >10 carbon atoms. However, PMMA is attacked by lower esters, eg, ethyl acetate, isopropyl acetate aromatic hydrocarbons, eg, benzene, toluene, xylene phenols, eg, cresol, carboHc acid aryl hahdes, eg, chlorobenzene, bromobenzene ahphatic acids, eg, butyric acid, acetic acid alkyl polyhaHdes, eg, ethylene dichloride, methylene chloride high concentrations of alcohols, eg, methanol, ethanol 2-propanol and high concentrations of alkahes and oxidizing agents. [Pg.262]

The thermoplastic or thermoset nature of the resin in the colorant—resin matrix is also important. For thermoplastics, the polymerisation reaction is completed, the materials are processed at or close to their melting points, and scrap may be reground and remolded, eg, polyethylene, propjiene, poly(vinyl chloride), acetal resins (qv), acryhcs, ABS, nylons, ceUulosics, and polystyrene (see Olefin polymers Vinyl polymers Acrylic ester polymers Polyamides Cellulose ESTERS Styrene polymers). In the case of thermoset resins, the chemical reaction is only partially complete when the colorants are added and is concluded when the resin is molded. The result is a nonmeltable cross-linked resin that caimot be reworked, eg, epoxy resins (qv), urea—formaldehyde, melamine—formaldehyde, phenoHcs, and thermoset polyesters (qv) (see Amino resins and plastics Phenolic resins). [Pg.456]

Alcohols 4-(4-Nitrobenzyl)- pyridine Amino compounds, esters and ethers do not interfere, but phenols and acids as well as epoxides, olefins and substances containing labile halogen probably do. [7]... [Pg.31]

While "conventional positive photoresists" are sensitive, high-resolution materials, they are essentially opaque to radiation below 300 nm. This has led researchers to examine alternate chemistry for deep-UV applications. Examples of deep-UV sensitive dissolution inhibitors include aliphatic diazoketones (61-64) and nitrobenzyl esters (65). Certain onium salts have also recently been shown to be effective inhibitors for phenolic resins (66). A novel e-beam sensitive dissolution inhibition resist was designed by Bowden, et al a (67) based on the use of a novolac resin with a poly(olefin sulfone) dissolution inhibitor. The aqueous, base-soluble novolac is rendered less soluble via addition of -10 wt % poly(2-methyl pentene-1 sulfone)(PMPS). Irradiation causes main chain scission of PMPS followed by depolymerization to volatile monomers (68). The dissolution inhibitor is thus effectively "vaporized", restoring solubility in aqueous base to the irradiated portions of the resist. Alternate resist systems based on this chemistry have also been reported (69,70). [Pg.11]

A wide range of anionic surfactants (Fig. 23) has been classified into groups, including alkyl benzene sulfonates (ABS), linear alkyl benzene sulfonates (LAS), alcohol sulfates (AS), alcohol ether sulfates (AES), alkyl phenol ether sulfates (APES), fatty acid amide ether sulfates (FAES), alpha-olefin sulfates (AOS), paraffin sulfonates, alpha sulfonated fatty acids and esters, sulfonated fatty acids and esters, mono- and di-ester sulfosuccinates, sulfosuccinamates, petroleum sulfonates, phosphate esters, and ligno-sulfonates. Of the anionic surfactants, ABS and LAS continue to be the major products of anionic surfactants [314, 324]. Anionic surfactants have been extensively monitored and characterized in various environmental matrices [34,35,45,325-329]. [Pg.51]

The aryl esters of formic and oxalic acid (exclusively) undergo very efficient decarbonylation to form phenol.5 It is noteworthy that aryl esters of formic acid, when irradiated in the presence of olefins, are added to the latter in the same way as phenols.83... [Pg.126]

Unlike 4-19, the Heck reaction is not limited to activated substrates. The substrate can be a simple olefin, or it can contain a variety of functional groups, such as ester, ether,319 carboxyl, phenolic, or cyano groups.320 Primary and secondary allylic alcohols (and even nonallylic unsaturated alcohols321) give aldehydes or ketones that are products of doublebond migration,322 e.g.,... [Pg.718]


See other pages where Olefinic phenol esters is mentioned: [Pg.103]    [Pg.83]    [Pg.200]    [Pg.238]    [Pg.83]    [Pg.200]    [Pg.128]    [Pg.78]    [Pg.196]    [Pg.568]    [Pg.260]    [Pg.316]    [Pg.481]    [Pg.387]    [Pg.119]    [Pg.35]    [Pg.27]    [Pg.723]    [Pg.2]    [Pg.60]    [Pg.363]    [Pg.29]    [Pg.30]    [Pg.1408]    [Pg.244]    [Pg.24]    [Pg.37]    [Pg.15]    [Pg.16]    [Pg.10]    [Pg.17]   
See also in sourсe #XX -- [ Pg.387 ]




SEARCH



Olefinic esters

Phenol esters

Phenolic esters

© 2024 chempedia.info