Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin value

In Table 9, we have used kj(2kt)l/2 for the oxidation of simple olefins [18] to calculate the values of fea, the rate coefficient for the addition of R02 to the olefin values of 2kt were assumed to be similar to those for olefins oxidized by Howard [90], corrected to 60—90°C by increasing Howard s values by a factor of three. This procedure introduces errors in addition to those inherent in the original measurement and values of kd calculated in this way probably are not accurate to better than a factor of ten. The values of kd in Table 9 calculated in this way are remarkably constant, so much so that one suspects that, even allowing for substantial errors, several factors work to compensate for differences in radical stabilization and steric requirements. [Pg.40]

Errors in the direction of high saturate values and low aromatic and low olefin values can result if the sample contains significant amounts of Cj and lighter hydrocarbons. Such samples are to be depentanized by Test Method D2001. [Pg.258]

Equation (A8) is valid if the composition of the initial reaction mixture does not change appreciably with pressure. According to Eq. (A8), an increase in pressure favors the inclusion of monomers, which in homopolymerization show a large negative aetivation volume (e.g., substituted olefins). Values of copolymerization parameters obtained at different pressures and activation volumes of some copolymerization reaetions are listed in Section G. [Pg.465]

For chemical processes, some examples are the elimination of aromatics by sulfonation, the elimination of olefins by bromine addition on the double bond (bromine number), the elimination of conjugated diolefins as in the case of the maleic anhydride value (MAV), and the extraction of bases or acids by contact with aqueous acidic or basic solutions. [Pg.26]

Represented by its abbreviation, MAV, the Maleic Anhydride Value Is based on the fact that olefinic conjugated double bonds can be added to maleic anhydride by the reaction below m]... [Pg.84]

More precisely, the rate of ozone formation depends closely on the chemical nature of the hydrocarbons present in the atmosphere. A reactivity scale has been proposed by Lowi and Carter (1990) and is largely utilized today in ozone prediction models. Thus the values indicated in Table 5.26 express the potential ozone formation as O3 formed per gram of organic material initially present. The most reactive compounds are light olefins, cycloparaffins, substituted aromatic hydrocarbons notably the xylenes, formaldehyde and acetaldehyde. Inversely, normal or substituted paraffins. [Pg.261]

Ethers result from the selective addition of methanol or ethanol to the isobutene contained in C4 olefin fractions. Ethers are used as components in gasoline because of their high octane blending value (RON and MON). [Pg.374]

Certain features of the addition of acetyl nitrate to olefins in acetic anhydride may be relevant to the mechanism of aromatic nitration by this reagent. The rapid reaction results in predominantly cw-addition to yield a mixture of the y -nitro-acetate and y5-nitro-nitrate. The reaction was facilitated by the addition of sulphuric acid, in which case the 3rield of / -nitro-nitrate was reduced, whereas the addition of sodium nitrate favoured the formation of this compound over that of the acetate. As already mentioned ( 5.3. i), a solution of nitric acid (c. i 6 mol 1 ) in acetic anhydride prepared at — 10 °C would yield 95-97 % of the nitric acid by precipitation with urea, whereas from a similar solution prepared at 20-25 °C and cooled rapidly to —10 °C only 30% of the acid could be recovered. The difference between these values was attributed to the formation of acetyl nitrate. A solution prepared at room... [Pg.83]

Polar solvents shift the keto enol equilibrium toward the enol form (174b). Thus the NMR spectrum in DMSO of 2-phenyl-A-2-thiazoline-4-one is composed of three main signals +10.7 ppm (enolic proton). 7.7 ppm (aromatic protons), and 6.2 ppm (olefinic proton) associated with the enol form and a small signal associated with less than 10% of the keto form. In acetone, equal amounts of keto and enol forms were found (104). In general, a-methylene protons of keto forms appear at approximately 3.5 to 4.3 ppm as an AB spectra or a singlet (386, 419). A coupling constant, Jab - 15.5 Hz, has been reported for 2-[(S-carboxymethyl)thioimidyl]-A-2-thiazoline-4-one 175 (Scheme 92) (419). This high J b value could be of some help in the discussion on the structure of 178 (p. 423). [Pg.422]

Table 4.2 Values of T j, for Poly(a-olefin) Crystals in Which the Polymer has the Indicated Substituent (Results are Discussed in Example 4.1)... Table 4.2 Values of T j, for Poly(a-olefin) Crystals in Which the Polymer has the Indicated Substituent (Results are Discussed in Example 4.1)...
Assuming that 0.5 mol % of the diol is lost to polymerization by dehydration to olefin, what would be the value of if the reaction were carried out to the same extent as in (1) ... [Pg.313]

Companies whose primary business is the production of ethylene derivatives, such as thermoplastics, tend to use ethane and propane feedstocks which minimise by-product streams and maximize ethylene production for their derivative plants. Table 1 provides a summary of the 1990 production quantity and value of primary olefins petrochemicals and olefin feedstocks in the United States. [Pg.172]

More recently, Sasol commercialized a new type of fluidized-bed reactor and was also operating a higher pressure commercial fixed-bed reactor (38). In 1989, a commercial scale fixed fluid-bed reactor was commissioned having a capacity similar to existing commercial reactors at Sasol One (39). This effort is aimed at expanded production of higher value chemicals, in particular waxes (qv) and linear olefins. [Pg.81]

Ethers, such as MTBE and methyl / fZ-amyl ether (TAME) are made by a catalytic process from methanol (qv) and the corresponding isomeric olefin. These ethers have excellent octane values and compete on an economic basis with alkylation for inclusion in gasoline. Another ether, ethyl tert-huty ether (ETBE) is made from ethanol (qv) and isobutylene (see Butylenes). The cost and economic driving forces to use ETBE vs MTBE or TAME ate a function of the raw material costs and any tax incentives that may be provided because of the ethanol that is used to produce it. [Pg.185]

Content of Ot-Olefin. An increase in the a-olefin content of a copolymer results in a decrease of both crystallinity and density, accompanied by a significant reduction of the polymer mechanical modulus (stiffness). Eor example, the modulus values of ethylene—1-butene copolymers with a nonuniform compositional distribution decrease as shown in Table 2 (6). A similar dependence exists for ethylene—1-octene copolymers with uniform branching distribution (7), even though all such materials are, in general, much more elastic (see Table 2). An increase in the a-olefin content in the copolymers also results in a decrease of their tensile strength but a small increase in the elongation at break (8). These two dependencies, however, are not as pronounced as that for the resin modulus. [Pg.396]

The even-numbered carbon alpha olefins (a-olefins) from through C q are especially useful. For example, the C, C, and Cg olefins impart tear resistance and other desirable properties to linear low and high density polyethylene the C, Cg, and C q compounds offer special properties to plasticizers used in flexible poly(vinyl chloride). Linear C q olefins and others provide premium value synthetic lubricants linear 145 olefins are used in... [Pg.435]

Wax Cracking. One or more wax-cracked a-olefin plants were operated from 1962 to 1985 Chevron had two such plants at Richmond, California, and Shell had three in Europe. The wax-cracked olefins were of limited commercial value because they contained internal olefins, branched olefins, diolefins, aromatics, and paraffins. These were satisfactory for feed to alkyl benzene plants and for certain markets, but unsatisfactory for polyethylene comonomers and several other markets. Typical distributions were C 33% C q, 7% 25% and 35%. Since both odd and... [Pg.441]

Alkylate is composed of a mixture of isoparaffins whose octane numbers vary with the olefins from which they were made. Butylenes produce the highest octane numbers, propylene the lowest, and amylenes (pentylenes) the iatermediate values. AH alkylates, however, have high (>87) octane numbers that make them particularly valuable. [Pg.207]

Propylene has many commercial and potential uses. The actual utilisation of a particular propylene supply depends not only on the relative economics of the petrochemicals and the value of propylene in various uses, but also on the location of the supply and the form in which the propylene is available. Eor example, economics dictate that recovery of high purity propylene for polymerisation from a smaH-volume, dilute off-gas stream is not feasible, whereas polymer-grade propylene is routinely recovered from large refineries and olefins steam crackers. A synthetic fuels project located in the western United States might use propylene as fuel rather than recover it for petrochemical use a plant on the Gulf Coast would recover it (see Euels, synthetic). [Pg.128]

Superffex C t lytic Crocking. A new process called Superflex is being commercialized to produce predorninantiy propylene and butylenes from low valued hydrocarbon streams from an olefins complex (74). In this process, raffinates (from the aromatics recovery unit and the B—B stream after the recovery of isobutylene) and pyrolysis gasoline (after the removal of the C —Cg aromatics fraction) are catalyticaHy cracked to produce propylene, isobutylene, and a cmde C —Cg aromatics fraction. AH other by-products are recycled to extinction. [Pg.368]

Recycles are meticulously accounted for because they load equipment and draw utilities. An olefin plant sustaining relatively low conversion per pass often builds up large amounts of unreacted feed that is recycled to the steam crackers. With utilities charged to ultimate products, these recycles would seem to the model to be free. The model would likely opt for very low conversion, which usually gives high ultimate yield and saves feedstock. Assigning the utility costs to users causes the compressor to pay for the extra recycle and the model raises conversion to the true optimum value. [Pg.347]

Until the mid-1950s the only polyolefins (polyalkenes) of commercial importance were polyethylene, polyisobutylene and isobutylene-isoprene copolymers (butyl rubber). Attempts to produce polymers from other olefins had, at best, resulted only in the preparation of low molecular weight material of no apparent commercial value. [Pg.247]

Ethylene-cyclo-olefin copolymers have been known since 1954 (DuPont USP2 721 189) but these materials only became of importance in the late 1990s with the development of copolymers of ethylene and 2-norbomene by Hoechst and Mitsui using metallocene technology developed by Hoechst. The product is marketed as Topas by Ticona. By adjustment of the monomer ratios polymers with a wide range of Tg values may be obtained including materials that are of potential interest as thermoplastic elastomers. This section considers only thermoplastic materials, cyclo-olefins of interest as elastomers are considered further in Section 11.10. [Pg.280]

Similar reactions can also be written for the alkoxysilanes but in commercial practice the chlorosilanes are favoured. These materials may be prepared by many routes, of which four appear to be of commercial value, the Grignard process, the direct process, the olefin addition method and the sodium condensation method. [Pg.817]

Iodine azide, on the other hand, forms pure adducts with A -, A - and A -steroids by a mechanism analogous to that proposed for iodine isocyanate additions. Reduction of such adducts can lead to aziridines. However, most reducing agents effect elimination of the elements of iodine azide from the /mwj -diaxial adducts of the A - and A -olefins rather than reduction of the azide function to the iodo amine. Thus, this sequence appears to be of little value for the synthesis of A-, B- or C-ring aziridines. It is worthy to note that based on experience with nonsteroidal systems the application of electrophilic reducing agents such as diborane or lithium aluminum hydride-aluminum chloride may yet prove effective for the desired reduction. Lithium aluminum hydride accomplishes aziridine formation from the A -adducts, Le., 16 -azido-17a-iodoandrostanes (97) in a one-step reaction. The scope of this addition has been considerably enhanced by the recent... [Pg.24]

The product from fluonnation of sodium acetate is acetyl hypofluorite [64], which IS isolated and characterized [65] The value of this reagent lies in its relative mildness, because it reacts cleanly with most olefins adding the elements of acetoxyl and fluorine [66] Tnfluoroacetyl hypofluorite adds cleanly only to benzylic or electron-rich double bonds... [Pg.110]


See other pages where Olefin value is mentioned: [Pg.20]    [Pg.132]    [Pg.521]    [Pg.22]    [Pg.20]    [Pg.132]    [Pg.521]    [Pg.22]    [Pg.181]    [Pg.182]    [Pg.184]    [Pg.153]    [Pg.164]    [Pg.172]    [Pg.175]    [Pg.175]    [Pg.199]    [Pg.81]    [Pg.366]    [Pg.512]    [Pg.403]    [Pg.272]    [Pg.102]    [Pg.164]    [Pg.165]    [Pg.142]    [Pg.563]    [Pg.238]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



© 2024 chempedia.info