Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin complexes reactions

Both polar and nonpolar organic compounds exhibit a rich chemistry with bare transition metal ions(l). Small polar compounds react with ions such as Fe and Co , in a single, bimolecular step to form a metal-olefin complex, reaction (i). [Pg.264]

Finding snch acids (called snperacids ) turned out to be the key to obtaining stable, long-lived alkyl cations and, in general, carbocations. If any deprotonation were still to take place, the formed alkyl cation (a strong Lewis acid) would immediately react with the formed olefin (a good TT-base), leading to the mentioned complex reactions. [Pg.76]

The Jacobsen-Katsuki epoxidation reaction is an efficient and highly selective method for the preparation of a wide variety of structurally and electronically diverse chiral epoxides from olefins. The reaction involves the use of a catalytic amount of a chiral Mn(III)salen complex 1 (salen refers to ligands composed of the N,N -ethylenebis(salicylideneaminato) core), a stoichiometric amount of a terminal oxidant, and the substrate olefin 2 in the appropriate solvent (Scheme 1.4.1). The reaction protocol is straightforward and does not require any special handling techniques. [Pg.29]

The unsaturated substituent in the carbene complex 1 often is aromatic or heteroaromatic, but can also be olefinic. The reaction conditions of the Dotz procedure are mild various functional groups are tolerated. Yields are often high. The use of chromium hexacarbonyl is disadvantageous, since this compound is considered to be carcinogenic however to date it cannot be replaced by a less toxic compound. Of particular interest is the benzo-anellation procedure for the synthesis of anthra-cyclinones, which are potentially cytostatic agents. ... [Pg.100]

The higher activity of the catalyst [(mall)Ni(dppmo)][SbFg] in [BMIM][PFg] (TOF = 25,425 h ) relative to the reaction under identical conditions in CFF2C12 (TOF = 7591 h ) can be explained by the fast extraction of products and side products out of the catalyst layer and into the organic phase. A high concentration of internal olefins (from oligomerization and consecutive isomerization) at the catalyst is known to reduce catalytic activity, due to the formation of fairly stable Ni-olefin complexes. [Pg.250]

Although olefin metathesis had soon after its discovery attracted considerable interest in industrial chemistry, polymer chemistry and, due to the fact that transition metal carbene species are involved, organometallic chemistry, the reaction was hardly used in organic synthesis for many years. This situation changed when the first structurally defined and stable carbene complexes with high activity in olefin metathesis reactions were described in the late 1980s and early 1990s. A selection of precatalysts discovered in this period and representative applications are summarized in Table 1. [Pg.226]

Hexacarbonyldicobalt complexes of alkynes have served as substrates in a variety of olefin metathesis reactions. There are several reasons for complex-ing an alkyne functionality prior to the metathesis step [ 125] (a) the alkyne may chelate the ruthenium center, leading to inhibition of the catalytically active species [125d] (b) the alkyne may participate in the metathesis reaction, giving undesired enyne metathesis products [125f] (c) the linear structure of the alkyne may prevent cyclization reactions due to steric reasons [125a-d] and (d) the hexacarbonylcobalt moiety can be used for further transformations [125c,f]. [Pg.260]

Although the actual reaction mechanism of hydrosilation is not very clear, it is very well established that the important variables include the catalyst type and concentration, structure of the olefinic compound, reaction temperature and the solvent. used 1,4, J). Chloroplatinic acid (H2PtCl6 6 H20) is the most frequently used catalyst, usually in the form of a solution in isopropyl alcohol mixed with a polar solvent, such as diglyme or tetrahydrofuran S2). Other catalysts include rhodium, palladium, ruthenium, nickel and cobalt complexes as well as various organic peroxides, UV and y radiation. The efficiency of the catalyst used usually depends on many factors, including ligands on the platinum, the type and nature of the silane (or siloxane) and the olefinic compound used. For example in the chloroplatinic acid catalyzed hydrosilation of olefinic compounds, the reactivity is often observed to be proportional to the electron density on the alkene. Steric hindrance usually decreases the rate of... [Pg.14]

Oxalamidinate anions represent the most simple type of bis(amidinate) ligands in which two amidinate units are directly connected via a central C-C bond. Oxalamidinate complexes of d-transition metals have recently received increasing attention for their efficient catalytic activity in olefin polymerization reactions. Almost all the oxalamidinate ligands have been synthesized by deprotonation of the corresponding oxalic amidines [pathway (a) in Scheme 190]. More recently, it was found that carbodiimides, RN = C=NR, can be reductively coupled with metallic lithium into the oxalamidinate dianions [(RN)2C-C(NR)2] [route (c)J which are clearly useful for the preparation of dinuclear oxalamidinate complexes. The lithium complex obtained this way from N,N -di(p-tolyl)carbodiimide was crystallized from pyridine/pentane and... [Pg.307]

For catalysis by Pt(II) and Rh(I) w-olefin complexes (those containing chelating diolefin ligands were less effective), three types of reaction have been observed depending on the nature of the silane (55). [Pg.308]

But it should be emphasized that there is no proof that the rr-olefin complex is an essential intermediate in any or all of these reactions. [Pg.411]

Synthesis, structure and reactions of chelate metal-olefin complexes... [Pg.461]

Table 1 Olefin hydrogenation reactions catalyzed by iron complexes... Table 1 Olefin hydrogenation reactions catalyzed by iron complexes...
The proposed reaction mechanism involves intermolecular nucleophilic addition of the amido ligand to the olefin to produce a zwitterionic intermediate, followed by proton transfer to form a new copper amido complex. Reaction with additional amine (presnmably via coordination to Cn) yields the hydroamination prodnct and regenerates the original copper catalyst (Scheme 2.15). In addition to the NHC complexes 94 and 95, copper amido complexes with the chelating diphosphine l,2-bis-(di-tert-bntylphosphino)-ethane also catalyse the reaction [81, 82]. [Pg.44]

Nickel(O) reacts with the olefin to form a nickel(0)-olefin complex, which can also coordinate the alkyl aluminum compound via a multicenter bond between the nickel, the aluminum and the a carbon atom of the trialkylaluminum. In a concerted reaction the aluminum and the hydride are transferred to the olefin. In this mechanistic hypothesis the nickel thus mostly serves as a template to bring the olefin and the aluminum compound into close proximity. No free Al-H or Ni-H species is ever formed in the course of the reaction. The adduct of an amine-stabihzed dimethylaluminum hydride and (cyclododecatriene)nickel, whose structure was determined by X-ray crystallography, was considered to serve as a model for this type of mechanism since it shows the hydride bridging the aluminum and alkene-coordinated nickel center [31]. [Pg.52]

Several transition metal complexes can catalyze the exchange of partners of two double bonds. Known as the olefin metathesis reaction, this process can be used to close or open rings, as well to interchange double-bond components. [Pg.761]

In the presence of transition-metal complexes, organic compounds that are unsaturated or strained often rearrange themselves. One synthetically useful transition-metal catalyzed isomerization is the olefin migration reaction. Two general mechanisms have been proposed for olefin migrations, depending on the type of catalyst employed (A and B) (Scheme 3.8).137... [Pg.71]

Formation of a trinuclear ruthenium carbene complex via the olefin scission reaction has also been noted (68) ... [Pg.141]

In order to rationalize the catalyst-dependent selectivity of cyclopropanation reaction with respect to the alkene, the ability of a transition metal for olefin coordination has been considered to be a key factor (see Sect. 2.2.1 and 2.2.2). It was proposed that palladium and certain copper catalysts promote cyclopropanation through intramolecular carbene transfer from a metal carbene to an alkene molecule coordinated to the same metal atom25,64. The preferential cyclopropanation of terminal olefins and the less hindered double bond in dienes spoke in favor of metal-olefin coordination. Furthermore, stable and metastable metal-carbene-olefin complexes are known, some of which undergo intramolecular cyclopropane formation, e.g. 426 - 427 415). [Pg.243]

Copper olefin complexes are usually generated by the direct reaction of a Cu(l) source, the ligand, and the corresponding olefin. Copper ethylene complexes are of interest in view of their biochemical importance,98,98a-98e their applications in organic chemistry,99,99a,99b and industrial applications.100 100 Because of this, many copper alkene complexes have been reported, with different nuclearity, in compounds with one, two, or even three C=C units coordinated to a given copper center. [Pg.174]

The cationic dinuclear oxo-gold(m) complexes of substituted bipyridyls react with olefins to give the stable coordination compounds shown in Scheme 79. The reactions are often incomplete, produce many byproducts, and give low yields of the olefin complexes/... [Pg.300]

In contrast, methyl cyclopropenone is reported283) to react with the Pt-olefin complex 455 at low temperature with replacement of the olefin ligand. In the resulting complex 456 the cyclopropenone interacts with the central atom via the C /C2 double bond according to spectroscopic evidence284). At elevated temperatures a metal insertion to the C1<2)/C3 bond occurs giving rise to 457. Pt complexes of a similiar type were obtained from dimethyl and diphenyl cyclopropenone on reaction with 455 and their structures were established by X-ray analysis285). [Pg.93]


See other pages where Olefin complexes reactions is mentioned: [Pg.104]    [Pg.287]    [Pg.182]    [Pg.164]    [Pg.567]    [Pg.230]    [Pg.235]    [Pg.237]    [Pg.237]    [Pg.261]    [Pg.152]    [Pg.109]    [Pg.400]    [Pg.71]    [Pg.72]    [Pg.146]    [Pg.8]    [Pg.250]    [Pg.10]    [Pg.597]    [Pg.870]    [Pg.132]    [Pg.361]    [Pg.32]    [Pg.34]    [Pg.209]   
See also in sourсe #XX -- [ Pg.381 , Pg.382 , Pg.383 , Pg.384 , Pg.385 , Pg.386 , Pg.387 ]




SEARCH



Carbene Complexes from Olefin Metathesis Reactions

Nickel-complex-catalyzed reactions olefin oligomerization

Olefin complexation

Olefin complexes

Olefin complexes, substitution reactions

Olefin complexes, substitution reactions platinum

Olefin complexes, substitution reactions rhodium

Olefin reactions

Olefination reactions

Olefines, complexes

Palladium complexes olefin reaction

Reactions of Olefin -Complexes

Reactions of Olefin Complexes with Electrophiles

Reactions of Olefin Complexes with Nucleophiles

Reactions of Olefins with Metal Complexes

Transition Metal-Carbene Complexes in Olefin Metathesis and Related Reactions

© 2024 chempedia.info