Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions of Olefin -Complexes

Studies on the preparation and reactions of olefin complexes have been the subject of several recent reviews. In particular olefin and acetylene complexes of platinum and palladium have been reviewed by Hartley 0, characterised ole-fin-metal complexes by Quinn and Tsai ) and some acetylene-metal complexes by Greaves, Lock and Maitlis 3>. [Pg.87]

Reaction of olefin complexes of palladium(ii) with n-butylamine takes place through an intermediate containing both olefin and amine coordinated to the metal. This proposed mechanism contrasts with the reaction of ethylamine with a platinum(ii)-olefin complex, where stereochemical evidence suggests that the amine attacks the olefin directly and is not co-ordinated to the platinum at any stage of the reaction. ... [Pg.152]

The main reactions of olefin complexes are the facile exchange of the olefin ligand with another ligand, the insertion of the olefin ligand into an M-H or M-alkyl bond (see Chap. 5), the addition of nucleophiles - and the activation of allylic C-H bonds. [Pg.228]

The rearrangement reactions of olefin complexes resemble the rearrangement of molecular hydrogen complexes into their dihydride isomers.70 For example, it was shown by NMR and IR methods that, in the... [Pg.382]

It was not fully realized until my breakthrough using superacids (vide infra) that, to suppress the deprotonation of alkyl cations to olefins and the subsequent formation of complex mixtures by reactions of olefins with alkyl cations, such as alkylation, oligomerization, polymerization, and cyclization, acids much stronger than those known and used in the past were needed. [Pg.75]

Hydroformylation, or the 0X0 process, is the reaction of olefins with CO and H9 to make aldehydes, which may subsequently be converted to higher alcohols. The catalyst base is cobalt naph-thenate, which transforms to cobalt hydrocarbonyl in place. A rhodium complex that is more stable and mnctions at a lower temperature is also used. [Pg.2094]

Matsumoto et al. reported some reactions of diruthenium complexes containing a bridging disulfide ligand with unsaturated compounds such as olefins and ketones [135]. These diruthenium complexes show unique reactivities towards double-bond systems since the S-S bond has some double bond character from the contribution of the canonical structure B in Scheme 36. [Pg.191]

J. Lewis and R. S. Nyholm Structure and reactions of metal complexes of chelate olefin ligands, pp. 61-99 (37). [Pg.452]

Pyridine-based N-containing ligands have been tested in order to extend the scope of the copper-catalyzed cyclopropanation reaction of olefins. Chelucci et al. [33] have carefully examined and reviewed [34] the efficiency of a number of chiral pyridine derivatives as bidentate Hgands (mainly 2,2 -bipyridines, 2,2 6, 2 -terpyridines, phenanthrolines and aminopyridine) in the copper-catalyzed cyclopropanation of styrene by ethyl diazoacetate. The corresponding copper complexes proved to be only moderately active and enantios-elective (ee up to 32% for a C2-symmetric bipyridine). The same authors prepared other chiral ligands with nitrogen donors such as 2,2 -bipyridines 21, 5,6-dihydro-1,10-phenanthrolines 22, and 1,10-phenanthrolines 23 (see Scheme 14) [35]. [Pg.104]

As an alternative method for the C-C bond formation, oligomerization and polymerization reactions of olefins catalyzed by a bis(imino)pyridine iron complex are also well known (Scheme 40) [121-124]. [Pg.58]

Fe-Catalyzed Oxidation Reactions of Olefins, Alkanes, and Alcohols Involvement of Oxo- and Peroxo Complexes... [Pg.83]

The complex Ni[(S2C2(CF3)2)]2 (392) is able to bind light olefins selectively and reversibly.1081 According to Scheme 4, the reaction of olefins with (392) can be controlled electrochemically, where the oxidation state-dependent binding and release of olefins is fast on the electrochemical timescale. Olefin binding is supposed to occur via the ligand S-donors. [Pg.341]

The reactions of olefins with non-organometallic Tc(VII) compounds behaved similarly. In a recent study, [Tc03C1(AaA)] (86a) (in which AA stands for aromatic diamine derivatives) was shown to react quantitatively with olefins, and produce the corresponding Tc(V) diolato-complex [TcOC1(OaO)(AaA)] (87a). The process could not be run catalytically, as Tc(V) complexes tend to undergo disproportionation rather than reoxidation in the presence of water [97]. These alkene-glycol interconversions could not be performed with the analog Re(VII) compound. Rhenium displays completely contrary behaviour, in that alkenes can... [Pg.181]

Dimerization, oligomerization, and similar reactions of olefins have been reported to be catalyzed by systems involving the majority of the Group VIII metals (3). The reasons for the particular interest in nickel-containing catalysts are their exceptionally high catalytic activity (catalytic reactions have been performed at temperatures as low as - 100°C), the diversity of catalytic reactions of obvious synthetic value, as well as the possibility to direct the course and control the selectivity of a catalytic reaction by tailoring the catalyst which are perhaps without parallel among transition metal complex catalysts. [Pg.106]

When alkenes are allowed to react with certain catalysts (mostly tungsten and molybdenum complexes), they are converted to other alkenes in a reaction in which the substituents on the alkenes formally interchange. This interconversion is called metathesis 126>. For some time its mechanism was believed to involve a cyclobutane intermediate (Eq. (16)). Although this has since been proven wrong and found that the catalytic metathesis rather proceeds via metal carbene complexes and metallo-cyclobutanes as discrete intermediates, reactions of olefins forming cyclobutanes,... [Pg.137]

Figure 2. Hydroboration reactions of olefin catalyzed by early transition metal complexes. The proposed reaction mechanism involves a o-bond metathesis step. (M = Lanthanide or other early transition metals.)... Figure 2. Hydroboration reactions of olefin catalyzed by early transition metal complexes. The proposed reaction mechanism involves a o-bond metathesis step. (M = Lanthanide or other early transition metals.)...
Tetramethyl- or tetraphenyl- (cyclobutadiene)nickel dihalides undergo reductive ligand substitution with nitrogen donor ligands such as 2,2 -bipyridine or 1,4-diaza-1,3-dienes with the addition of sodium metal237. The 2,2/-bipyridyl ligand is readily displaced and reaction of this complex with a variety of olefins and alkynes leads to cycloaddition reactions with the cyclobutadiene ligand. [Pg.969]

Two of the most characteristic reactions of carbene complexes are olefin metathesis and olefin cyclopropanation. Olefin metathesis is a reaction in which the C-C double bond of an alkene is cleaved, and one of the resulting alkylidene fragments combines with the metal-bound carbene to form a new alkene. The second alkylidene fragment forms a new carbene eomplex with the metal. Olefin cyclopropanation is a reaction in which a a bond is formed between the metal-bound alkylidene and each of the two carbon atoms of the alkene, to yield a cyclopropane. [Pg.5]

For a decade or so [CoH(CN)5] was another acclaimed catalyst for the selective hydrogenation of dienes to monoenes [2] and due to the exclusive solubility of this cobalt complex in water the studies were made either in biphasic systems or in homogeneous aqueous solutions using water soluble substrates, such as salts of sorbic add (2,4-hexadienoic acid). In the late nineteen-sixties olefin-metal and alkyl-metal complexes were observed in hydrogenation and hydration reactions of olefins and acetylenes with simple Rii(III)- and Ru(II)-chloride salts in aqueous hydrochloric acid [3,4]. No significance, however, was attributed to the water-solubility of these catalysts, and a new impetus had to come to trigger research specifically into water soluble organometallic catalysts. [Pg.10]

Cyclopropanation is an important synthetic method, and enantioselective catalytic reactions of olefins and diazoacetates provide access to valuable products with biological activity. In general, these reactions are conducted in anhydrous solvents and in several cases water was found to diminish the rate or selectivity (or both) of a given process. Therefore it came as a surprise, that the Cyclopropanation of styrene with (+)- or (-)-menthyl diazoacetates, catalyzed by a water-soluble Ru-complex with a chiral bis(hydroxymethyldihydrooxazolyl)pyridine (hm-pybox) ligand proceeded not only faster but with much Wgher enantioselectivity (up to 97 % e.e.) than the analogous reactions in neat THF or toluene(8-28 % e.e.) (Scheme 6.34) [72]. The fine yields and enantioselectivities may be the results of an accidental favourable match of the steric and electronic properties of hm-pybox and those of the menthyl-dizaoacetates, since the hydroxyethyl or isopropyl derivatives of the ligand proved to be inferior to the hydroxymethyl compound. Nevertheless, this is the first catalytic aqueous cyclopropanation which may open the way to other similar reactions in aqueous media. [Pg.186]

During the past two decades, within the series of our studies, we have developed a silylative coupling reaction of olefins with vinylsubstituted siHcon compounds which takes place in the presence of transition-metal complexes (e.g. mthenium and rhodium) that initially contain or generate M—H and M—Si bonds (for reviews, see Refs [5] and [6]). The reaction involves activation of the =C—H bond of olefins and cleavage of the =C—Si bond of vinylsilane. The reaction, which is catalyzed by complexes of the type [ M( x-OSiMe3)(cod) 2] (where M = Rh, Ir) occurs according to Equation 14.12 [71, 72). [Pg.360]

As well as the valuable information on the properties of olefin complexes produced, certain novel synthetic procedures have become available through this work, such as the reaction (4) seen in Fig. 12. which may be summarized ... [Pg.5]

Reaction with trifluoromethanesulfonic anhydride in benzene yields cop-per(I) trifluoromethanesulfonate, [Cu(03SCF3)]2 CeHs, a white crystalline, air-sensitive complex (Cotton, F. A., G. Wilkinson, C. A. Murillo and M. Bochmann. 1999. Advanced Inorganic Chemistry, 6th ed. pp. 857-858. New York Wiley Interscience) Olefins can displace benzene in the above compound readily, forming a variety of olefin complexes. [Pg.273]

Scheme 5.35 Inverse electron demands Diels-Alder reaction of benzopyranylidene complexes with electron-rich olefins. Scheme 5.35 Inverse electron demands Diels-Alder reaction of benzopyranylidene complexes with electron-rich olefins.

See other pages where Reactions of Olefin -Complexes is mentioned: [Pg.381]    [Pg.384]    [Pg.478]    [Pg.381]    [Pg.384]    [Pg.478]    [Pg.287]    [Pg.69]    [Pg.109]    [Pg.195]    [Pg.192]    [Pg.208]    [Pg.166]    [Pg.455]    [Pg.511]    [Pg.277]    [Pg.347]    [Pg.280]    [Pg.194]    [Pg.13]    [Pg.192]    [Pg.290]    [Pg.997]    [Pg.326]    [Pg.111]   


SEARCH



Olefin complexation

Olefin complexes

Olefin complexes reactions

Olefin reactions

Olefination reactions

Olefines, complexes

Reactions of Olefins

© 2024 chempedia.info