Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-carbene-olefin complexes

In order to rationalize the catalyst-dependent selectivity of cyclopropanation reaction with respect to the alkene, the ability of a transition metal for olefin coordination has been considered to be a key factor (see Sect. 2.2.1 and 2.2.2). It was proposed that palladium and certain copper catalysts promote cyclopropanation through intramolecular carbene transfer from a metal carbene to an alkene molecule coordinated to the same metal atom25,64. The preferential cyclopropanation of terminal olefins and the less hindered double bond in dienes spoke in favor of metal-olefin coordination. Furthermore, stable and metastable metal-carbene-olefin complexes are known, some of which undergo intramolecular cyclopropane formation, e.g. 426 - 427 415). [Pg.243]

Osborn and Green s elegant results are instructive, but their relevance to metathesis must be qualified. Until actual catalytic activity with the respective complexes is demonstrated, it remains uncertain whether this chemistry indeed relates to olefin metathesis. With this qualification in mind, their work in concert is pioneering as it provides the initial experimental backing for a basic reaction wherein an olefin and a metal exclusively may produce the initiating carbene-metal complex by a simple sequence of 7r-complexation followed by a hydride shift, thus forming a 77-allyl-metal hydride entity which then rearranges into a metallocyclobutane via a nucleophilic attack of the hydride on the central atom of the 7r-allyl species ... [Pg.457]

Enyne metathesis is caused by transition metals. There are two types of enyne metathesis one is caused by a carbene complex, as is olefin metathesis, via [2+2] cocyclization and the other type is a reaction that proceeds via oxidative cycli-zation by a low-valent transition metal complex (Scheme 2). [Pg.143]

The transition metal-catalyzed cyclopropanation of alkenes is one of the most efficient methods for the preparation of cyclopropanes. In 1959 Dull and Abend reported [617] their finding that treatment of ketene diethylacetal with diazomethane in the presence of catalytic amounts of copper(I) bromide leads to the formation of cyclopropanone diethylacetal. The same year Wittig described the cyclopropanation of cyclohexene with diazomethane and zinc(II) iodide [494]. Since then many variations and improvements of this reaction have been reported. Today a large number of transition metal complexes are known which react with diazoalkanes or other carbene precursors to yield intermediates capable of cyclopropanating olefins (Figure 3.32). However, from the commonly used catalysts of this type (rhodium(II) or palladium(II) carboxylates, copper salts) no carbene complexes have yet been identified spectroscopically. [Pg.105]

A series of reagents have been developed which are prepared in situ from a geminal dihalide or a dithioacetal [635,730] and a transition metal complex. Titanium-based reagents of this type olefinate a broad range of carbonyl compounds, including carboxylic acid derivatives (Table 3.12), and are a practical alternative to the use of isolated carbene complexes. [Pg.129]

Ylides other than acceptor-substituted diazomethanes have only occasionally been used as carbene-complex precursors. lodonium ylides (PhI=CZ Z ) [1017,1050-1056], sulfonium ylides [673], sulfoxonium ylides [1057] and thiophenium ylides [1058,1059] react with electrophilic transition metal complexes to yield intermediates capable of undergoing C-H or N-H insertions and olefin cyclopropanations. [Pg.176]

This article presents the principles known so far for the synthesis of metal complexes containing stable carbenes, including the preparation of the relevant carbene precursors. The use of some of these compounds in transition-metal-catalyzed reactions is discussed mainly for ruthenium-catalyzed olefin metathesis and palladium-Znickel-catalyzed coupling reactions of aryl halides, but other reactions will be touched upon as well. Chapters about the properties of metal- carbene complexes, their applications in materials science and medicinal chemistry, and their role in bioinorganic chemistry round the survey off. The focus of this review is on ZV-heterocyclic carbenes, in the following abbreviated as NHC and NHCs, respectively. [Pg.3]

The reaction of thiourea derivatives with a metal complex to form NHC complexes is a combination of the NHC formation from thioureas with potassium or sodium [Eq. (23)] and the cleavage of electron rich olefins. For example, a lO-S-3-tetraazapentalene derivative is cleaved by Pd(PPh3)4 and [(Ph3P)3RhCl], respectively [Eq. (35)]. Other substitution patterns in the carbene precursor, including selenium instead of sulfur can also be used. ... [Pg.28]

Murai and Chatani speculated that the two acetylene carbons should be converted into two carbene equivalents to give XVIII during the reaction." To trap this intermediate, the reaction of 6,11-dien-l-yne 69c, which has an olefin moiety in a tether, is carried out in the presence of [RuCl2(CO)3]2 in toluene at 80 °C for 4 h to give tetracyclic compound 71 in 84% yield. It is interesting to note that other transition metal complexes, such as PtCl2, [Rh(OOCCF3)2]2, [IrCl(CO)3] , arid ReCl(CO)s also show catalytic activity for this very complex transformation (Scheme 27). [Pg.291]

The role of carbenes and metal carbene complexes in transition metal-catalyzed processes is suspected of being quite extensive (61). For example, the role of carbenes in the olefin metathesis reaction as described in the previous section is probably important (55, 60). It is quite possible that the o-v rearrangement is important in these reactions also, but this has not been investigated in detail. [Pg.249]

Detection of propagating metal-carbene-olefin complexes. 1508... [Pg.1497]

It has generally been assumed that in olefin metathesis reactions the olefin first coordinates to the metal carbene complex, en route to the formation of the intermediate metallacyclobutane complex, and that after cleavage of this intermediate the newly formed double bond is temporarily coordinated to the metal centre. A number of stable metal-carbene-olefin complexes are known see elsewhere116,117 for earlier references. They are mostly stabilized by chelation of the olefin and/or by heteroatom substituents on the carbene, although some have been prepared which enjoy neither of these modes of stabilization118,119. [Pg.1508]

The only direct evidence for the presence of metal-carbene-olefin intermediates in catalytic metathesis systems comes from a study of the interaction of the tungsten cyclopentylidene complex 27 with cycloalkenes such as cycloheptene 28 in CD2CI2. When these are mixed at —96 °C and the temperature raised to between —53 and —28 °C, no polymerization occurs but the 13C NMR spectrum contains additional resonances which may be assigned to the metal-carbene-olefin complex 29. The line intensities show that the equilibrium 7 moves to the right as the temperature is lowered120. [Pg.1508]

Carbenes can be stabilized as transition metal complexes decomposition of phenyldiazomethane in the presence of a ruthenium(II) complex gives a carbene complex stable enough to be isolated and stored for months. These complexes are among the most important of carbene-derived reagents because of a remarkable reaction known as alkene (or more commonly olefin) metathesis. [Pg.1074]

Lappert developed the thermolysis of an electron-rich olefin in the presence of a transition metal complex as another way to synthesise these compounds [4], When, in 1975, Clarke and Taube published their findings on carbon coordinated purine transition metal complexes [5], transition metal NHC complexes with functionalised NHC made their debut in biochemistry. The chemistry of carbenes from natural products became firmly established following the discovery that the catalytic activity of thiamine (vitamin Bl) is based on the intermediate formation of a carbene derived from thiazole [6-9] (see Figure 1.2). [Pg.1]

There are essentially three different types of transition metal carbene complexes featuring three different types of carbene ligands. They have all been named after their first discoverers Fischer carbenes [27-29], Schrock carbenes [30,31] and WanzUck-Arduengo carbenes (see Figure 1.1). The latter, also known as N-heterocycUc carbenes (NHC), should actually be named after three people Ofele [2] and Wanzlick [3], who independently synthesised their first transition metal complexes in 1968, and Arduengo [1] who reported the first free and stable NHC in 1991. Fischer carbene complexes have an electrophilic carbene carbon atom [32] that can be attacked by a Lewis base. The Schrock carbene complex has a reversed reactivity. The Schrock carbene complex is usually employed in olefin metathesis (Grubbs catalyst) or as an alternative to phosphorus ylides in the Wittig reaction [33]. [Pg.7]


See other pages where Metal-carbene-olefin complexes is mentioned: [Pg.33]    [Pg.33]    [Pg.973]    [Pg.2]    [Pg.13]    [Pg.237]    [Pg.91]    [Pg.243]    [Pg.168]    [Pg.449]    [Pg.455]    [Pg.143]    [Pg.214]    [Pg.178]    [Pg.493]    [Pg.159]    [Pg.80]    [Pg.702]    [Pg.12]    [Pg.1509]    [Pg.1514]    [Pg.119]    [Pg.345]    [Pg.85]    [Pg.37]    [Pg.215]    [Pg.246]    [Pg.278]    [Pg.279]    [Pg.311]    [Pg.53]    [Pg.96]    [Pg.131]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Carbene-olefin

Carbenes metal carbene complex

Carbenes metal complexes

Carbonyl Olefination Utilizing Metal Carbene Complexes

Complexes metal carbene

Metal carbene complexes in olefin metathesis

Metal carbenes

Metal-carbene-olefin complexes decomposition

Metal-carbene-olefin complexes propagating, detection

Olefin complexation

Olefin complexes

Olefin metathesis using metal carbene complexes

Olefin-metal complexes

Olefines, complexes

Transition Metal-Carbene Complexes in Olefin Metathesis and Related Reactions

© 2024 chempedia.info