Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of terpenes

Review Problem 2 This allyl bromide is an important intermediate in the synthesis of terpenes (including many flavouring and perfumery compounds), as the five carbon fi agment occurs widely in nature. How would you make it ... [Pg.12]

Strategy Problem 6 A labelled compound for biosynthetic studies. Mevaloitic acid (TM 418) is an intermediate in the biosynthesis of terpenes and steroids (Tedder, volume 4, p.217 ff). To study exactly what happens to each carbon atom during its transformation into, say, hmonene (418A), we need separate samples of mevalonic acid labelled with in each carbon atom in the molecule. This turns our normal strategy on its head since we must now look for one carbon discoimections. You can use reagents like Na CN, and... [Pg.134]

The last group of reactions uses ring opening of carbonyl or 1-hydroxyalkyl substituted cyclopropanes, which operate as a -synthons. d -Synthons, e.g. hydroxide or halides, yield 1,4-disubstituted products (E. Wenkert, 1970 A). (1-Hydroxyalkyl)- and (1-haloalkyl)-cyclopropanes are rearranged to homoallylic halides, e.g. in Julia s method of terpene synthesis (M. Julia, 1961, 1974 S.F. Brady, I968 J.P. McCormick, 1975). [Pg.69]

Isotope incorporation experiments have demonstrated the essential correctness of the scheme presented m this and preceding sections for terpene biosynthesis Considerable effort has been expended toward its detailed elaboration because of the common biosyn thetic origin of terpenes and another class of acetate derived natural products the steroids... [Pg.1093]

Essential oils (Section 26 7) Pleasant smelling oils of plants consisting of mixtures of terpenes esters alcohols and other volatile organic substances Ester (Sections 4 1 and 20 1) Compound of the type... [Pg.1283]

Trihalomethane (ppb) Peak Area solution of terpene hydrate in a 25-mL volumetric flask and... [Pg.616]

Viayl fluoride is flammable ia air between the limits of 2.6 and 22% by volume. Minimum ignition temperature for VF and air mixtures is 400°C. A small amount, <0.2%, of terpenes is added to VF to prevent spontaneous polymerization. The U.S. Department of Transportation has classified the inhibited VF as a flammable gas. [Pg.381]

Since GAs as diterpenes share many intermediates in the biosynthetic steps leading to other terpenoids, eg, cytokinins, ABA, sterols, and carotenoids, inhibitors of the mevalonate (MVA) pathway of terpene synthesis also inhibit GA synthesis (57). Biosynthesis of GAs progresses in three stages, ie, formation of / Akaurene from MVA, oxidation of /-kaurene to GA 2" hyde, and further oxidation of the GA22-aldehyde to form the different GAs more than 70 different GAs have been identified. [Pg.47]

Particular drawbacks of using alkylsiHcon and alkyltin haHdes with AlCl for the cationic polymerization of terpenes are low yields and the fact that they require rigorously dried feeds (<50 ppm H2O) to be effective. Increased water content results in lower yields and lower softening points (85). Catalyst systems comprised of AlCl with antimony haHdes in the presence or absence of a lower alkyl, alkenyl, or aralkyl haHde are particularly effective in systems containing up to 300 ppm H2O (89,90). Use of 2—12 wt % of a system composed of 2—3 parts AlCl, 0.7—0.9 parts SbCl, and 0—0.2 parts of an organic... [Pg.356]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Hydrocarbons, compounds of carbon and hydrogen, are stmcturally classified as aromatic and aliphatic the latter includes alkanes (paraffins), alkenes (olefins), alkynes (acetylenes), and cycloparaffins. An example of a low molecular weight paraffin is methane [74-82-8], of an olefin, ethylene [74-85-1], of a cycloparaffin, cyclopentane [287-92-3], and of an aromatic, benzene [71-43-2]. Cmde petroleum oils [8002-05-9], which span a range of molecular weights of these compounds, excluding the very reactive olefins, have been classified according to their content as paraffinic, cycloparaffinic (naphthenic), or aromatic. The hydrocarbon class of terpenes is not discussed here. Terpenes, such as turpentine [8006-64-2] are found widely distributed in plants, and consist of repeating isoprene [78-79-5] units (see Isoprene Terpenoids). [Pg.364]

Resin and Resinoid. Natural resins are plant exudates formed by the oxidation of terpenes. Many are acids or acid anhydrides. Prepared resins are made from oleoresins from which the essential oil has been removed. A resinoid is prepared by hydrocarbon extraction of a natural resin. [Pg.296]

In several important cases, new synthetic strategies have been developed into new production schemes. An outstanding example of this is the production of an entire family of terpene derivatives from a-pinene (29), the major component of most turpentines, via linalool (3) (12). Many of these materials had been produced from P-pinene, a lesser component of turpentine, via pyrolysis to myrcene and further chemical processing. The newer method offers greater manufacturing dexibiUty and better economics, and is environmentally friendly in that catalytic air oxidation is used to introduce functionality. [Pg.85]

Terpenes are characterized as being made up of units of isoprene in a head-to-tail orientation. This isoprene concept, invented to aid in the stmcture deterrnination of terpenes found in natural products, was especially useful for elucidation of stmctures of more complex sesquiterpenes, diterpenes, and polyterpenes. The hydrocarbon, myrcene, and the terpene alcohol, a-terpineol, can be considered as being made up of two isoprene units in such a head-to-tail orientation (1). [Pg.408]

Fractional vacuum distillation is the method used to separate terpene mixtures into their components. The terpene chemist usually has in the laboratory a range of columns with differing numbers of theoretical stages. Experimental distillation in the laboratory is useful in providing data for manufacturing plants that produce commercial quantities of terpene products. [Pg.410]

Synthesis of P-Methylheptenone from Petrochemical Sources. p-MethyUieptenone (1) is an important intermediate in the total synthesis of terpenes. Continuous hydrochlorination of isoprene [78-79-5] produces prenyl chloride [505-60-6] which then reacts with acetone with a quaternary ammonium catalyst and sodium hydroxide to give P-methyUieptenone (6-methyIhept-5-en-2-one [110-93-0]) (eq. 1) (16—19). [Pg.410]

Dimerization of Isoprene. Isoprene is becoming an increasingly important raw material for the production of terpenes. For example, myrcene (7) can be produced by the dimerization of isoprene (2-methyl-1,3-butadiene) (42—44) and myrcene is very useful for synthesizing a number of oxygenated terpenes important in the flavor and fragrance industry. [Pg.411]

H)- and (+)-1imonenes are widely used ia the manufacture of terpene resias. Additionally, a (-)-limonene and (+)- P-pheUandrene mixture from sulfate turpentine has been used to produce terpene resias. (+)-Limoaeae from the citms iadustry coatiauaHy fiads aew uses as a solveat aot only for its solvency properties but also for its orange oil fragrance. [Pg.415]

Linalool has been used to prepare a mixture of terpenes useful for enhancing the aroma or taste of foodstuffs, chewing gums, and perfume compositions. Aqueous citric acid reaction at 100°C converts the linalool (3) to a complex mixture. A few of the components include a-terpineol (34%) (9), Bois de Rose oxide (5.1%) (64), ocimene quintoxide (0.5%) (65), linalool oxide (0.3%) (66), tij -ocimenol (3.28%) (67), and many other alcohols and hydrocarbons (131). [Pg.421]

The price of natural citral from Utsea cubeba in 1995 was 17.60—18.70/kg and the price of terpene-based synthetic citral was for 6.60—8.80/kg (69). Higher grades of synthetic citral are available for flavor and fragrance uses and price largely depends on the quaUty and quantity purchased. Shipment of citral is usually made in lined dmms, pails, or aluminum cans. [Pg.424]

Since the acetal exists in equiUbtium with the aldehyde, it is possible for the aldehyde to be released when water is added in a mixed drink, changing the balance and giving a burst of freshness to a mixed drink. Ethyl esters of terpene alcohols in citms oils and other botanicals, plus the ethyl esters of fatty and volatile acids, are formed during prolonged exposure to ethyl alcohol. Certain beverage alcohol products that need to contain milk, eggs, or other protein containing materials must be developed carefully and the added flavors must be considered to prevent the precipitation of the protein and separation of the product. [Pg.90]

Forests can act as sources of some of the trace gases in the atmosphere, such as hydrocarbons, hydrogen sulfide, NO, and NH3. Forests have been identified as emitters of terpene hydrocarbons. In 1960, Went (10) estimated that hydrocarbon releases to the atmosphere were on the order of 108 tons per year. Later work by Rasmussen (11) suggested that the release of terpenes from forest systems is 2 x 10 tons of reactive materials per year on a global basis. This is several times the anthropogenic input. Yet, it is important to remember that forest emissions are much more widely dispersed and less concentrated than anthropogenic emissions. Table 8-2 shows terpene emissions from different types of forest systems in the United States. [Pg.117]

Other natural product-based resins also became widely used, such as the light colored Lewis acid oligomerized products of terpenes such as a-pinene, p-pinene, and limonene. These natural product resins are relatively expensive, however, and formulators now often use the newer, less expensive synthetic resins in present day natural rubber PSAs. These are termed the aliphatic or C-5 resins and are Lewis acid oligomerized streams of predominately C-5 unsaturated monomers like cis- and /rawi-piperylene and 2-methyl-2-butenc [37]. These resins are generally low color products with compatibility and softening points similar to the natural product resins. Representative products in the marketplace would be Escorez 1304 and Wingtack 95. In most natural rubber PSA formulations, rubber constitutes about 100 parts and the tackifier about 75-150 parts. [Pg.478]

Odour. This aspect is important in resins derived from natural sources. Rosins based on wood and gum rosin retain trace quantities of terpenes and have a piney odour. Tall oil rosins retain the typical sour odour of the rosin. Odour can be removed by steam sparging under vacuum before or during esterification of rosins. Addition of odour masks can also be done. [Pg.615]


See other pages where Of terpenes is mentioned: [Pg.227]    [Pg.253]    [Pg.387]    [Pg.138]    [Pg.367]    [Pg.814]    [Pg.824]    [Pg.1085]    [Pg.1085]    [Pg.1094]    [Pg.26]    [Pg.336]    [Pg.297]    [Pg.409]    [Pg.610]    [Pg.747]    [Pg.146]    [Pg.814]    [Pg.824]    [Pg.1085]    [Pg.1094]    [Pg.251]    [Pg.254]   
See also in sourсe #XX -- [ Pg.8 , Pg.33 , Pg.34 , Pg.35 , Pg.36 ]

See also in sourсe #XX -- [ Pg.8 , Pg.33 , Pg.34 , Pg.35 , Pg.36 ]




SEARCH



Biomimetic Total Synthesis of Terpenes and Steroids through Polyene Cyclization

Biosynthesis of terpenes

Carbocations of terpenes

Cyclization of terpenes

Effect of terpenes

Esterification of Terpenes

Mass spectrometry of terpenes, terpenoids and carotenoid

Metabolism of plant terpene volatiles

Of triquinane terpene

Oxidation of terpenes

Piscicidal activity of liverwort terpenes

Rearrangement of Terpene Epoxides

Rearrangement of terpenes

Selected Syntheses of Terpenes

Special Topic Biosynthesis of Terpenes

Steroids are metabolites of terpene origin

Syntheses of terpenes

Terpenes are volatile constituents of plant resins and essential oils

The structures of selected terpenes

Toxicity of terpenes

© 2024 chempedia.info