Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of picric acid

CfiHsNjOs. Red needles m.p. 168-169°C. Soluble in dilute acids and alkalis. Prepared by reduction of picric acid with sodium hydrogen sulphide, ft is used for the preparation of azodyes, which can be after-chromed by treatment with metallic salts owing to the presence of a hydroxyl group ortho to the amino-group. [Pg.313]

Reactions of Picric Acid, (i) The presence of the three nitro groups in picric acid considerably increases the acidic properties of the phenolic group and therefore picric acid, unlike most phenols, will evolve carbon dioxide from sodium carbonate solution. Show this by boiling picric acid with sodium carbonate solution, using the method described in Section 5, p. 330. The reaction is not readily shown by a cold saturated aqueous solution of picric acid, because the latter is so dilute that the sodium carbonate is largely converted into sodium bicarbonate without loss of carbon dioxide. [Pg.174]

To a cold aqueous solution of picric acid, add about an equal volume of dilute potassium cyanide solution. An orange coloration develops and rapidly darkens to a deep red. [Pg.174]

Uses of Picric Acid. The following further reactions of picric acid are used for analytical purposes in the laboratory. [Pg.174]

If an ethanolic solution of picric acid is similarly added to one of aniline, no precipitation occurs, owing to the high solubility of aniline picrate in ethanol. If, however, a cold aqueous solution of aniline hydrochloride is added to a similar solution of sodium picrate and the mixture shaken, yellow crystals of aniline picrate, m.p. 165 , soon separate. [Pg.174]

Picric acid is used on a large scale as a high explosive, but for this purpose requires a detonator. If a few small crystals of the pure acid are heated on a crucible lid, they first melt, and ultimately burn harmlessly with a smoky flame. Metallic salts of picric acid are much less stable than the free acid,... [Pg.174]

If cold saturated ethanolic solutions of the recrystallised tetrahydrocarbazole and of picric acid are mixed and stirred, the chocolate-brown picrate of the carbazole slowly crystallises. After it has been filtered off at the pump, washed with a small quantity of ethanol, and dried, it has m.p. 145-146°. [Pg.295]

A) Picrates. Attempt precipitation of picrates by (a) mixing cold ethanolic solutions of the amine and of picric acid (saturated) or... [Pg.374]

Make a concentrated solution of anthracene in hot acetone. To about 2 ml. of this solution add a cold concentrated acetone solution of picric acid drop by drop, and note the formation of a red coloration which becomes deeper on further addition of the acid. If excess of picric acid is added, however, the solution becomes paler in colour, and this is to be avoided if possible. Boil to ensure that both components are in solution and then transfer to a small porcelain basin or watch-glass ruby-red crystals of anthracene picrate separate out on cooling. The product, however, is often contaminated with an excess of either anthracene or of picric acid, which appear as yellowish crystals. [Pg.394]

Place a mixture of 0-5 g. of finely powdered thiourea, 0-5 g. of the alkyl halide and 5 ml. of alcohol in a test-tube or small flask equipped with a reflux condenser. Reflux the mixture for a j)eriod depending upon the nature of the halide primary alkyl bromides and iodides, 10-20 minutes (according to the molecular weight) secondary alkyl bromides or iodides, 2-3 hours alkyl chlorides, 3-5 hours polymethy lene dibromides or di-iodides, 20-50 minutes. Then add 0 5 g. of picric acid, boil until a clear solution is obtained, and cool. If no precipitate is obtained, add a few drops of water. RecrystaUise the resulting S-alkyl-iso-thiuronium picrate from alcohol. [Pg.292]

Mix together 1 0 g. of pure p-naphthol and the theoretical quantity of 50 per cent, potassium hydroxide solution, add 0-5 g. of the halide, followed by sufficient rectified spirit to produce a clear solution. For alkyl chlorides, the addition of a little potassium iodide is recommended. Heat the mixture under reflux for 15 minutes, and dissolve any potassium halide by the addition of a few drops of water. The p-naphthyl ether usually crystallises out on cooling if it does not, dilute the solution with 10 per cent, sodium hydroxide solution untU precipitation occurs. Dissolve the p-naphthyl ether in the minimum volume of hot alcohol and add the calculated quantity of picric acid dissolved in hot alcohol. The picrate separates out on cooling. Recrystallise it from rectified spirit. [Pg.292]

If the amine is soluble in water, mix it with a slight excess (about 25 per cent.) of a saturated solution of picric acid in water (the solubility in cold water is about 1 per cent.). If the amine is insoluble in water, dissolve it by the addition of 2-3 drops of dilute hydrochloric acid (1 1) for each 2-3 ml. of water, then add a sUght excess of the reagent. If a heavy precipitate does not form immediately after the addition of the picric acid solution, allow the mixture to stand for some time and then shake vigorously. Filter off the precipitated picrate and recrystaUise it from boiling water, alcohol or dilute alcohol, boiUng 10 per cent, acetic acid, chloroform or, best, benzene. [Pg.422]

The following alternative procedure may sometimes be employed. Dissolve 0-5 g. of the amine in 5 ml. of rectified spirit and add 5 ml, of a cold saturated solution of picric acid in alcohol. Warm on a water bath... [Pg.422]

The foUowing are typical experimental details for the preparation of naphthalene picrate. Dissolve 0 -1 g. of naphthalene and 0-2 g. of picric acid separately in the minimum volume of hot rectified spirit (about 2 ml.), mix the solutions and allow to cool. FUter and wash with 2 ml. of alcohol. RecrystaUise from hot alcohol, ethyl acetate or ether. [Pg.518]

Dissolve 0 01 mol of the phenohc ether in 10 ml. of warm chloroform, and also (separately) 0 01 mol of picric acid plus 5 per cent, excess (0 -241 g.) in 10 ml. of chloroform. Stir the picric acid solution and pour in the solution of the phenohc ether. Set the mixture aside in a 100 mb beaker and ahow it to crystallise. Recrystahise the picrate from the minimum volume of chloroform. In most cases equahy satisfactory results may be obtained by conducting the preparation in rectified spirit (95 per cent. CjHgOH). The m.p. should be determined immediately after recrystallisation. It must be pointed out, however, that the picrates of aromatic ethers suflFer from the disadvantage of being comparatively unstable and may undergo decomposition during recrystaUisation. [Pg.672]

Aromatic hydrocarbons also form coloured and higlily characteristic picrates by interaction with a solution of picric acid (Section IV,9,7). [Pg.1058]

Esbach s reagent (estimation of proteins) dissolve 10 g of picric acid and 20 g of citric acid in water and dilute to 1 liter. [Pg.1190]

Hager s reagent (for alkaloids) this reagent is a saturated solution of picric acid in water. [Pg.1191]

Controlled-potential coulometry also can be applied to the quantitative analysis of organic compounds, although the number of applications is significantly less than that for inorganic analytes. One example is the six-electron reduction of a nitro group, -NO2, to a primary amine, -NH2, at a mercury electrode. Solutions of picric acid, for instance, can be analyzed by reducing to triaminophenol. [Pg.502]

The purity of a sample of picric acid, C6H3N3O7, is determined by controlled-potential coulometry, converting the picric acid to triaminophenol, C6H9N3O. A 0.2917-g sample of picric acid is placed in a 1000-mL volumetric flask... [Pg.537]

The most versatile derivative from which the free base can be readily recovered is the picrate. This is very satisfactory for primary and secondary aliphatic amines and aromatic amines and is particularly so for heterocyclic bases. The amine, dissolv in water or alcohol, is treated with excess of a saturated solution of picric acid in water or alcohol, respectively, until separation of the picrate is complete. If separation does not occur, the solution is stirred vigorously and warmed for a few minutes, or diluted with a solvent in which the picrate is insoluble. Thus, a solution of the amine and picric acid in ethanol can be treated with petroleum ether to precipitate the picrate. Alternatively, the amine can be dissolved in alcohol and aqueous picric acid added. The picrate is filtered off, washed with water or ethanol and recrystallised from boiling water, ethanol, methanol, aqueous ethanol, methanol or chloroform. The solubility of picric acid in water and ethanol is 1.4 and 6.23 % respectively at 20°. [Pg.57]

Aromatic hydrocarbons can be purified as their picrates using the procedures described for amines. Instead of picric acid, 1,3,5-trinitrobenzene or 2,4,7-trinitrofluorenone can also be used. In all these cases, following recrystallisation, the hydrocarbon can be isolated either as described for amines or by passing a solution of the adduct through an activated alumina column and eluting with toluene or petroleum ether. The picric acid and nitro compounds are more strongly adsorbed on the column. [Pg.58]

Saccharin and the three diphenols, pyrocatechol, resorcinol and hydroquinone, react only weakly or not at all. The same is true of picric acid. On the other hand, cyclohexanesulfamic acid and bis-(2-ethylhexyl)-phosphoric acid are readily detected [1]. [Pg.174]

Dissolve naphthalene in a little spirit, and add an equal quantity of a solution of picric acid in spirit. On cooling, yellow needles of naphthalene picrate separate, C,oHg.CQH20H(NO,)3. Benzene forms colourless crystals, anthracene, scarlet needles, having a similar composition. Sec Appendix, p. 295. [Pg.186]

Oxazines can form salts with strong acids. The salts vary with regard to their solubility and stability. Some of the hydrochlorides are hydrolyzed by water. Some less common salts are known e.g., dichromates and ferrocyanates, " chloroplatinates and chloroaurates. Sometimes the picrates can also be used to identify the 1,3-oxazine derivatives. " In some instances a special procedure is required to form the picrates, as the heterocyclic ring can open under the action of picric acid. " ... [Pg.333]

Indol can be isolated from, and determined in, essential oils in the following manner Ihe oil is mixed with 10 per cent, of picric acid and heated to 60°. Excess of petroleum ether is then added. A picric acid compound of indol separates in long red crystals, which are washed with petroleum ether and decomposed by caustic alkali, and the free indol extracted by ether, and the residue left on evaporation of the ether steam-distilled, when pure indol passes over. [Pg.292]

A methanolic solution of a V-alkyl-2-nitroaniline (13.3 mmol) was hydrogenated at 20 C and atmospheric pressure in the presence of Raney nickel, filtered and treated with coned HCI (1.32 mL, 13.3 mmol), followed by sodium dicyanimide (1.17 g, 13.1 mmol) in H20 (5 mL). The mixture was heated in an open vessel on a steam bath for 1 h, by which time most of the McOH had evaporated. The resulting suspension of a black oil was treated with a solution of picric acid (6.0 g, 26.2 mmol) in MeOH, whereupon the dipicrate of the product separated as yellow crystals. [Pg.475]

Alkali fusion of the metabolite furnished p-hydroxybenzoic acid in good yield as the only isolable product. Vigorous nitric acid oxidation of M gave a high yield of picric acid. Both degradation products must have arisen from the same site, which can be represented by part structure V. While positions 3 and 5 are probably unsubstituted, the vigorous nature of the degradations allows that those at 2 and 6 could bear carbon atoms. [Pg.89]


See other pages where Of picric acid is mentioned: [Pg.313]    [Pg.374]    [Pg.174]    [Pg.378]    [Pg.394]    [Pg.397]    [Pg.32]    [Pg.678]    [Pg.767]    [Pg.19]    [Pg.292]    [Pg.406]    [Pg.124]    [Pg.184]    [Pg.295]    [Pg.512]    [Pg.620]    [Pg.742]    [Pg.42]    [Pg.52]   
See also in sourсe #XX -- [ Pg.326 ]

See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Picric acid

Picric acid, acidity

Salts of Picric Acid

Solubility of Picric Acid

Solubility of Picric Acid in

Solubility of Picric Acid in Water

© 2024 chempedia.info