Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of methyl methacrylate

The action of sulphuric acid alone upon acetone cyanohydrin affords a-methylacrylic acid. The methyl methacrylate polymers are the nearest approach to an organic glass so far developed, and are marketed as Perspex (sheet or rod) or Dialcon (powder) in Great Britain and as Plexiglass and Luciie in the U.S.A. They are readily depolymerised to the monomers upon distillation. The constitution of methyl methacrylate polymer has been given as ... [Pg.1016]

Place 25 g. of methyl methacrylate polymer (G.B. Diakon (powder). Perspex (sheet) U.S.A. Lucite, Plexiglass) in a 100 ml. Claisen flask, attach an efficient condenser e.g., of the double smface type) and distil with a small luminous flame move the flame to and fro around the sides of the flask. At about 300° the polymer softens and undergoes rapid depolymerisation to the monomer, methyl methacrylate, which distils over into the receiver. Continue the distillation until only a small black residue (3-4 g.) remains. Redistil the hquid it passes over at 100-110°, mainly at 100-102°. The yield of methyl methacrylate (monomer) is 20 g. If the monomer is to be kept for any period, add 0 -1 g. of hydro quinone to act as a stabiUser or inhibitor of polymerisation. [Pg.1023]

Figure 6.2 shows how the percent conversion of methyl methacrylate to polymer varies with time. These experiments were carried out in benzene at... [Pg.361]

Figure 6.3 shows some data which constitute a test of Eq. (6.26). In Fig. 6.3a, Rp and [M] are plotted on a log-log scale for a constant level of redox initiator. The slope of this line, which indicates the order of the polymerization with respect to monomer, is unity, showing that the polymerization of methyl methacrylate is first order in monomer. Figure 6.3b is a similar plot of the initial rate of polymerization—which essentially maintains the monomer at constant con-centration—versus initiator concentration for several different monomer-initiator combinations. Each of the lines has a slope of indicating a half-order dependence on [I] as predicted by Eq. (6.26). Figure 6.3 shows some data which constitute a test of Eq. (6.26). In Fig. 6.3a, Rp and [M] are plotted on a log-log scale for a constant level of redox initiator. The slope of this line, which indicates the order of the polymerization with respect to monomer, is unity, showing that the polymerization of methyl methacrylate is first order in monomer. Figure 6.3b is a similar plot of the initial rate of polymerization—which essentially maintains the monomer at constant con-centration—versus initiator concentration for several different monomer-initiator combinations. Each of the lines has a slope of indicating a half-order dependence on [I] as predicted by Eq. (6.26).
AIBN was synthesized using C-labeled reagents and the tagged compound was used to initiate polymerization of methyl methacrylate and styrene. [Pg.415]

Arnett + initiated the polymerization of methyl methacrylate in benzene at ... [Pg.417]

Fox and Schneckof carried out the free-radical polymerization of methyl methacrylate between -40 and 250 C. By analysis of the a-methyl peaks in the NMR spectra of the products, they determined the following values of a, the probability of an isotactic placement in the products prepared at the different temperatures ... [Pg.500]

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

Because the polymerization occurs totally within the monomer droplets without any substantial transfer of materials between individual droplets or between the droplets and the aqueous phase, the course of the polymerization is expected to be similar to bulk polymerization. Accounts of the quantitative aspects of the suspension polymerization of methyl methacrylate generally support this model (95,111,112). Developments in suspension polymerization, including acryUc suspension polymers, have been reviewed (113,114). [Pg.170]

Most large-scale industrial methacrylate processes are designed to produce methyl methacrylate or methacryhc acid. In some instances, simple alkyl alcohols, eg, ethanol, butanol, and isobutyl alcohol, maybe substituted for methanol to yield the higher alkyl methacrylates. In practice, these higher alkyl methacrylates are usually prepared from methacryhc acid by direct esterification or transesterification of methyl methacrylate with the desired alcohol. [Pg.247]

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

Domestic production of methyl methacrylate from 1971 to 1992 has shown a 5.7% annualized rate of growth ... [Pg.253]

Woddwide production capacity is shown in Table 6. Economic conditions in the late 1980s and eady 1990s led to global overcapacity of methyl methacrylate, which caused many plants to be operated at less than optimum levels. [Pg.253]

The uniqueness of methyl methacrylate as a plastic component accounts for its industrial use in this capacity, and it far exceeds the combined volume of all of the other methacrylates. In addition to plastics, the various methacrylate polymers also find appHcation in sizable markets as diverse as lubricating oil additives, surface coatings (qv), impregnates, adhesives (qv), binders, sealers (see Sealants), and floor poHshes. It is impossible to segregate the total methacrylate polymer market because many of the polymers produced are copolymers with acrylates and other monomers. The total 1991 production capacity of methyl methacrylate in the United States was estimated at 585,000 t/yr. The worldwide production in 1991 was estimated at about 1,785,000 t/yr (3). [Pg.259]

Manufacture of Monomers. The various commercial processes for the manufacture of methyl methacrylate have been reviewed (31) (see... [Pg.263]

Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

Emulsion Polymerization. The principal markets for aqueous dispersion polymers made by emulsion polymerization of methacrylic esters are the paint (qv), paper (qv), textile, floor poHsh, and leather (qv) industries where they are used principally as coatings or binders. Copolymers of methyl methacrylate with either ethyl acrylate or butyl acrylate are most common. [Pg.266]

A typical process for the preparation of a poly(methyl methacrylate) suspension polymer involves charging a mixture of 24.64 parts of methyl methacrylate and 0.25 parts of benzoyl peroxide to a rapidly stirred, 30°C solution of 0.42 parts of disodium phosphate, 0.02 parts of monosodium phosphate, and 0.74 parts of Cyanomer A-370 (polyacrylamide resin) in 73.93 parts of distilled water. The reaction mixture is heated under nitrogen to 75°C and is maintained at this temperature for three hours. After being cooled to room temperature, the polymer beads are isolated by filtration, washed, and dried (69). [Pg.268]

A review covers the preparation and properties of both MABS and MBS polymers (75). Literature is available on the grafting of methacrylates onto a wide variety of other substrates (76,77). Typical examples include the grafting of methyl methacrylate onto mbbers by a variety of methods chemical (78,79), photochemical (80), radiation (80,81), and mastication (82). Methyl methacrylate has been grafted onto such substrates as cellulose (83), poly(vinyl alcohol) (84), polyester fibers (85), polyethylene (86), poly(styrene) (87), poly(vinyl chloride) (88), and other alkyl methacrylates (89). [Pg.269]

The woddwide production capacity of methyl methacrylate in 1991 was estimated to be about 1,785,000 t/yr. Principal producers are Western Europe, Japan, and the United States, which accounted for about 33% of this capacity. The important U.S. producers are as follows (3) ... [Pg.269]

AH-acryHc (100%) latex emulsions are commonly recognized as the most durable paints for exterior use. Exterior grades are usuaHy copolymers of methyl methacrylate with butyl acrylate or 2-ethyIhexyl acrylate (see Acrylic ester polymers). Interior grades are based on methyl methacrylate copolymerized with butyl acrylate or ethyl acrylate. AcryHc latex emulsions are not commonly used in interior flat paints because these paints typicaHy do not require the kind of performance characteristics that acryHcs offer. However, for interior semigloss or gloss paints, aH-acryHc polymers and acryHc copolymers are used almost exclusively due to their exceUent gloss potential, adhesion characteristics, as weU as block and print resistance. [Pg.540]

I ew Rubber-Modified Styrene Copolymers. Rubber modification of styrene copolymers other than HIPS and ABS has been useful for specialty purposes. Transparency has been achieved with the use of methyl methacrylate as a comonomer styrene—methyl methacrylate copolymers have been successfully modified with mbber. Improved weatherability is achieved by modifying SAN copolymers with saturated, aging-resistant elastomers (88). [Pg.509]


See other pages where Of methyl methacrylate is mentioned: [Pg.329]    [Pg.1023]    [Pg.1023]    [Pg.883]    [Pg.883]    [Pg.883]    [Pg.436]    [Pg.464]    [Pg.217]    [Pg.182]    [Pg.398]    [Pg.528]    [Pg.242]    [Pg.249]    [Pg.251]    [Pg.255]    [Pg.264]    [Pg.265]    [Pg.268]    [Pg.269]    [Pg.373]    [Pg.144]    [Pg.410]    [Pg.480]    [Pg.77]    [Pg.229]    [Pg.438]   
See also in sourсe #XX -- [ Pg.145 ]




SEARCH



Anionic polymerization of methyl methacrylate

Bulk polymerization of methyl methacrylate

Controlled Oligomerization of Methyl Methacrylate with Template

Copolymer of styrene and methyl methacrylate

Copolymerizations of methyl methacrylate with styrene

Emulsion polymerization of methyl methacrylate

General properties of poly(methyl methacrylate)

Homopolymerization of methyl methacrylate

Methyl ester of methacrylic acid

Methyl methacrylate

Methyl methacrylate depolymerisation of resin

Oligomerization of methyl methacrylate

Photograph of decomposition furnace methyl methacrylate manufacture

Photoinitiated polymerization of methyl methacrylate

Photopolymerization of methyl methacrylate

Polymerization of Methyl Methacrylate with 2,2-Azobisisobutyronitrile in Bulk

Polymerization of methyl methacrylate

Polymerization of methyl methacrylate and

Preparation of Isotactic and Syndiotactic Poly(Methyl Methacrylate) with Butyllithium in Solution

Solution polymerization of methyl methacrylate

Suspension polymerization of methyl methacrylate

Synthesis of Methyl Methacrylate

© 2024 chempedia.info