Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of chiral compounds

The Cahn-Ingold-Prelog (CIP) rules stand as the official way to specify chirahty of molecular structures [35, 36] (see also Section 2.8), but can we measure the chirality of a chiral molecule. Can one say that one structure is more chiral than another. These questions are associated in a chemist s mind with some of the experimentally observed properties of chiral compounds. For example, the racemic mixture of one pail of specific enantiomers may be more clearly separated in a given chiral chromatographic system than the racemic mixture of another compound. Or, the difference in pharmacological properties for a particular pair of enantiomers may be greater than for another pair. Or, one chiral compound may rotate the plane of polarized light more than another. Several theoretical quantitative measures of chirality have been developed and have been reviewed elsewhere [37-40]. [Pg.418]

Analytically, the inclusion phenomenon has been used in chromatography both for the separation of ions and molecules, in Hquid and gas phase (1,79,170,171). Peralkylated cyclodextrins enjoy high popularity as the active component of hplc and gc stationary phases efficient in the optical separation of chiral compounds (57,172). Chromatographic isotope separations have also been shown to occur with the help of Werner clathrates and crown complexes (79,173). [Pg.75]

Use ofMethanesulfonyl Chloride (MSC) in the Synthesis of Chiral Compounds, Technical Bulletin A-70-11, Elf Atochem North America, Philadelphia, Pa., 1992. [Pg.160]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

It is possible to obtain pure enantiomers of chiral compounds. One property of separated enantiomers is to cause the rotation of the plane of polarized light by opposite... [Pg.75]

Wood, W.M.L., 1997. Crystal science techniques in the manufacture of chiral compounds. Cli. 7 in Chirality in Industry II. Eds. N.A. Collins, G.N. Sheldrake and Crosby. New York J. Wiley Sons. [Pg.327]

The main strategy for catalytic enantioselective cycloaddition reactions of carbonyl compounds is the use of a chiral Lewis acid catalyst. This approach is probably the most efficient and economic way to effect an enantioselective reaction, because it allows the direct formation of chiral compounds from achiral substrates under mild conditions and requires a sub-stoichiometric amount of chiral material. [Pg.151]

HPLC separations are one of the most important fields in the preparative resolution of enantiomers. The instrumentation improvements and the increasing choice of commercially available chiral stationary phases (CSPs) are some of the main reasons for the present significance of chromatographic resolutions at large-scale by HPLC. Proof of this interest can be seen in several reviews, and many chapters have in the past few years dealt with preparative applications of HPLC in the resolution of chiral compounds [19-23]. However, liquid chromatography has the attribute of being a batch technique and therefore is not totally convenient for production-scale, where continuous techniques are preferred by far. [Pg.4]

V. M. L. Wood, Crystal science techniques in the manufacture of chiral compounds in Chirality and Industry II. Developments in the Manufacture and applications of optically active compounds, A. N. Collins, G. N. Sheldrake, J. Crosby (Eds.), John Wiley Sons, New York (1997) Chapter 7. [Pg.19]

Comparisons of LC and SFC have also been performed on naphthylethylcar-bamoylated-(3-cyclodextrin CSPs. These multimodal CSPs can be used in conjunction with normal phase, reversed phase, and polar organic eluents. Discrete sets of chiral compounds tend to be resolved in each of the three mobile phase modes in LC. As demonstrated by Williams et al., separations obtained in each of the different mobile phase modes in LC could be replicated with a simple CO,-methanol eluent in SFC [54]. Separation of tropicamide enantiomers on a Cyclobond I SN CSP with a modified CO, eluent is illustrated in Fig. 12-4. An aqueous-organic mobile phase was required for enantioresolution of the same compound on the Cyclobond I SN CSP in LC. In this case, SFC offered a means of simplifying method development for the derivatized cyclodextrin CSPs. Higher resolution was also achieved in SFC. [Pg.308]

M. R. Kula, U. Kragl, Dehydrogenases in the synthesis of chiral compounds" in R. Patel, Stereoselective Biocatalysis, Marcel Dekker, 2000, 839. [Pg.347]

Since double bonds may be considered as masked carbonyl, carboxyl or hydroxymethylene groups, depending on whether oxidative or reductive methods are applied after cleavage of the double bond, the addition products from (E)-2 and carbonyl compounds can be further transformed into a variety of chiral compounds. Thus, performing a second bromine/lithium exchange on compound 4, and subsequent protonation, afforded the olefin 5. Ozonolysis followed by reduction with lithium aluminum hydride gave (S)-l-phenyl-l,2-ethanediol in >98% ee. [Pg.143]

The power ofbiocatalysts for the production of chiral compounds can be elevated to a second stage when proper use of the process leads to a larger number of different enantioenriched products from the same reaction. Some efforts have been made in this direction because the enzyme can be selective to either nucleophile or acyl donor. The elegancy of the reaction is increased when the process is carried out for the resolution of both. Scheme 7.20 depicts this possibility [38]. [Pg.182]

The system that has replaced the dl system is the Cahn-Ingold Prelog system, in which the four groups on an asymmetric carbon are ranked according to a set of sequence rules. For our purposes, we confine ourselves to only a few of these rules, which are sufficient to deal with the vast majority of chiral compounds. [Pg.139]

For a discussion of these rules, as well as for a review of methods for establishing configurations of chiral compounds not containing chiral atoms, see Krow, G. Top. Stereochem., 1970, 5, 31. [Pg.196]

The advantages of such biotransformation processes are (1) the relatively high yields which can be achieved with specific enzymes, (2) the formation of chiral compounds suitable for biopharmaceuticals, and (3) the relatively mild reaction conditions. Key issues in industrial-scale process development are achieving high product concentrations, yields and productivities by maintaining enzyme activity and stability under reaction conditions while reducing enzyme production costs. [Pg.24]

Lipase catalysis is often used for enantioselective production of chiral compounds. Lipase induced the enantioselective ring-opening polymerization of racemic lactones. In the lipase-catalyzed polymerization of racemic (3-BL, the enantioselec-tivity was low an enantioselective polymerization of (3-BL occurred by using thermophilic lipase to give (/ )-enriched PHB with 20-37% enantiomeric excess (ee). ... [Pg.219]

The catalyst testing was carried out in a gas phase downflow stainless steel tubular reactor with on-line gas analysis using a Model 5890 Hewlett-Packard gas chromatograph (GC) equipped with heated in-line automated Valeo sampling valves and a CP-sD 5 or CP-sil 13 capillary WCOT colunm. GC/MS analyses of condensable products, especially with respect to O-isotopic distribution, was also carried out using a CP-sil 13 capillary column. For analysis of chiral compounds, a Chirasil-CD capillary fused silica column was employed. [Pg.602]

Synthesis of optically pure compounds via transition metal mediated chiral catalysis is very useful from an industrial point of view. We can produce large amounts of chiral compounds with the use of very small quantities of a chiral source. The advantage of transition metal catalysed asymmetric transformation is that there is a possibility of improving the catalyst by modification of the ligands. Recently, olefinic compounds have been transformed into the corresponding optically active alcohols (ee 94-97%) by a catalytic hydroxylation-oxidation procedure. [Pg.174]

A number of specialised stationary phases have been developed for the separation of chiral compounds. They are known as chiral stationary phases (CSPs) and consist of chiral molecules, usually bonded to microparticulate silica. The mechanism by which such CSPs discriminate between enantiomers (their chiral recognition, or enantioselectivity) is a matter of some debate, but it is known that a number of competing interactions can be involved. Columns packed with CSPs have recently become available commercially. They are some three to five times more expensive than conventional hplc columns, and some types can be used only with a restricted range of mobile phases. Some examples of CSPs are given below ... [Pg.103]

Over the years of evolution, Nature has developed enzymes which are able to catalyze a multitude of different transformations with amazing enhancements in rate [1]. Moreover, these enzyme proteins show a high specificity in most cases, allowing the enantioselective formation of chiral compounds. Therefore, it is not surprising that they have been used for decades as biocatalysts in the chemical synthesis in a flask. Besides their synthetic advantages, enzymes are also beneficial from an economical - and especially ecological - point of view, as they stand for renewable resources and biocompatible reaction conditions in most cases, which corresponds with the conception of Green Chemistry [2]. [Pg.529]


See other pages where Of chiral compounds is mentioned: [Pg.77]    [Pg.187]    [Pg.24]    [Pg.25]    [Pg.53]    [Pg.85]    [Pg.200]    [Pg.203]    [Pg.323]    [Pg.135]    [Pg.194]    [Pg.398]    [Pg.157]    [Pg.1]    [Pg.395]    [Pg.68]    [Pg.68]    [Pg.39]    [Pg.67]    [Pg.99]    [Pg.212]    [Pg.215]    [Pg.332]    [Pg.13]    [Pg.86]    [Pg.103]    [Pg.36]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Addition of Chiral Enolates to Achiral Carbonyl Compounds

Centrally chiral compounds of carbon and silicon

Centrally chiral compounds of nitrogen and phosphorus

Centrally chiral compounds of sulphur

Chiral compounds

Classification of Chiral Nematic Liquid Crystalline Compounds

Enantioselective Synthesis Mediated by Chiral Crystals of an Achiral Organic Compound in Conjunction with Asymmetric Autocatalysis

Glycosylamines as Auxiliaries in Stereoselective Syntheses of Chiral Amino Compounds

Monofunctional Epoxides as Chiral Building Blocks for the Synthesis of Biologically Active Compounds

Preparation of chiral compounds

Separation of chiral compounds

Stereoelectronics reactions of chiral carbonyl compounds with

Synthesis of Chiral Compounds

Use of naturally occurring chiral compounds as building blocks

© 2024 chempedia.info