Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of caprolactam

Colourless liquid with a strong peppermintlike odour b.p. 155" C. Manufactured by passing cyclohexanol vapour over a heated copper catalyst. Volatile in steam. Oxidized to adipic acid. Used in the manufacture of caprolactam. Nylon, adipic acid, nitrocellulose lacquers, celluloid, artificial leather and printing inks. [Pg.122]

Since adipic acid has been produced in commercial quantities for almost 50 years, it is not surprising that many variations and improvements have been made to the basic cyclohexane process. In general, however, the commercially important processes stiU employ two major reaction stages. The first reaction stage is the production of the intermediates cyclohexanone [108-94-1] and cyclohexanol [108-93-0], usuaHy abbreviated as KA, KA oil, ol-one, or anone-anol. The KA (ketone, alcohol), after separation from unreacted cyclohexane (which is recycled) and reaction by-products, is then converted to adipic acid by oxidation with nitric acid. An important alternative to this use of KA is its use as an intermediate in the manufacture of caprolactam, the monomer for production of nylon-6 [25038-54-4]. The latter use of KA predominates by a substantial margin on a worldwide basis, but not in the United States. [Pg.240]

Essentially all the ammonium sulfate fertilizer used in the United States is by-product material. By-product from the acid scmbbing of coke oven gas is one source. A larger source is as by-product ammonium sulfate solution from the production of caprolactam (qv) and acrylonitrile, (qv) which are synthetic fiber intermediates. A third but lesser source is from the ammoniation of spent sulfuric acid from other processes. In the recovery of by-product crystals from each of these sources, the crystallization usually is carried out in steam-heated sa turator—crystallizers. Characteristically, crystallizer product is of a particle size about 90% finer than 16 mesh (ca 1 mm dia), which is too small for satisfactory dry blending with granular fertilizer materials. Crystals of this size are suitable, however, as a feed material to mixed fertilizer granulation plants, and this is the main fertilizer outlet for by-product ammonium sulfate. [Pg.221]

Ammonia is used in the fibers and plastic industry as the source of nitrogen for the production of caprolactam, the monomer for nylon 6. Oxidation of propylene with ammonia gives acrylonitrile (qv), used for the manufacture of acryHc fibers, resins, and elastomers. Hexamethylenetetramine (HMTA), produced from ammonia and formaldehyde, is used in the manufacture of phenoHc thermosetting resins (see Phenolic resins). Toluene 2,4-cHisocyanate (TDI), employed in the production of polyurethane foam, indirectly consumes ammonia because nitric acid is a raw material in the TDI manufacturing process (see Amines Isocyanates). Urea, which is produced from ammonia, is used in the manufacture of urea—formaldehyde synthetic resins (see Amino resins). Melamine is produced by polymerization of dicyanodiamine and high pressure, high temperature pyrolysis of urea, both in the presence of ammonia (see Cyanamides). [Pg.358]

Ammonium sulfate is also recovered as a by-product in large amounts during the coking of coal, nickel refining, and organic monomer synthesis, particularly during production of caprolactam (qv). About four metric tons of ammonium sulfate are produced per ton of caprolactam which is an intermediate in the production of nylon. [Pg.368]

Nylon-6 [25038-54-4] (9) is made by the bulk addition polymerization of caprolactam. Monofilament Nylon-6 sutures are avadable undyed (clear), or in post-dyed black (with logwood extract), blue (ED C Blue No. 2), or green (D C Green No. 5). Monofilament nylon-6 sutures are sold under the trade names Ethilon and Monosof monofilament nylon-6,6 sutures, under the trade names Dermalon and Ophthalon and monofilament polyethylene terephthalate sutures, under the trade name Surgidac. [Pg.269]

Benzoic Acid. Ben2oic acid is manufactured from toluene by oxidation in the liquid phase using air and a cobalt catalyst. Typical conditions are 308—790 kPa (30—100 psi) and 130—160°C. The cmde product is purified by distillation, crystallization, or both. Yields are generally >90 mol%, and product purity is generally >99%. Kalama Chemical Company, the largest producer, converts about half of its production to phenol, but most producers consider the most economic process for phenol to be peroxidation of cumene. Other uses of benzoic acid are for the manufacture of benzoyl chloride, of plasticizers such as butyl benzoate, and of sodium benzoate for use in preservatives. In Italy, Snia Viscosa uses benzoic acid as raw material for the production of caprolactam, and subsequendy nylon-6, by the sequence shown below. [Pg.191]

Powder coatings are formulated from the reaction product of trimethylolpropane and IPDI, blocked with caprolactam, and polyester polyols. The saturated polyester polyols are based on aromatic acid diols, neopentyl glycol, and trimellitic anhydride for further branching. To avoid the release of caprolactam in the curing reaction, systems based on IPDI dimer diols are used. [Pg.350]

Ben2oic acid is almost exclusively manufactured by the cobalt cataly2ed Hquid-phase air oxidation of toluene [108-88-3]. Large-scale plants have been built for ben2oic acid to be used as an intermediate in the production of phenol (by Dow Chemical) and in the production of caprolactam (by Snia Viscosa) (6-11). [Pg.53]

Caprolactam. At the same time that Dow was constmcting toluene to phenol plants, Snia Viscosa (28—30) introduced two processes for the manufacture of caprolactam (qv) from benzoic acid. The earlier process produced ammonium sulfate as a by-product, but the latter process did not. In either process benzoic acid is hydrogenated to cyclohexanecarboxyHc acid [98-89-5] which then reacts with nitrosylsulfuric acid to form caprolactam [105-60-2]. [Pg.55]

Caprolactam [105-60-2] (2-oxohexamethyleiiiiriiQe, liexaliydro-2J -a2epin-2-one) is one of the most widely used chemical intermediates. However, almost all of the aimual production of 3.0 x 10 t is consumed as the monomer for nylon-6 fibers and plastics (see Fibers survey Polyamides, plastics). Cyclohexanone, which is the most common organic precursor of caprolactam, is made from benzene by either phenol hydrogenation or cyclohexane oxidation (see Cyclohexanoland cyclohexanone). Reaction with ammonia-derived hydroxjlamine forms cyclohexanone oxime, which undergoes molecular rearrangement to the seven-membered ring S-caprolactam. [Pg.426]

Caprolactam, mol wt 113.16, is a white, hygroscopic, crystalline soHd at ambient temperature, with a characteristic odor. It is very soluble in water and in most common organic solvents and is sparingly soluble in high molecular weight aUphatic hydrocarbons. Molten caprolactam is a powerful solvent for polar and nonpolar organic chemicals. Selected physical properties and solubiUties of caprolactam are Hsted in Tables 1 and 2, respectively. [Pg.427]

The low melting point of caprolactam and its stabiUty and low viscosity form the basis for commercial transportation practice caprolactam is handled as a Hquid in insulated tank cats or tmcks. [Pg.428]

The infrared spectmm of caprolactam has been given (3). Melting point data for the caprolactam—water system, as shown in Eigute 1, ate indicative of successful purification of caprolactam by crystallization from aqueous solution such purification is very effective for separating and rejecting polar impurities. [Pg.428]

AH commercial processes for the manufacture of caprolactam ate based on either toluene or benzene, each of which occurs in refinery BTX-extract streams (see BTX processing). Alkylation of benzene with propylene yields cumene (qv), which is a source of phenol and acetone ca 10% of U.S. phenol is converted to caprolactam. Purified benzene can be hydrogenated over platinum catalyst to cyclohexane nearly aH of the latter is used in the manufacture of nylon-6 and nylon-6,6 chemical intermediates. A block diagram of the five main process routes to caprolactam from basic taw materials, eg, hydrogen (which is usuaHy prepared from natural gas) and sulfur, is given in Eigute 2. [Pg.428]

Cyclohexanone oxime is converted quantitatively to caprolactam by Beckmann rearrangement in the presence of oleum, which is of sufficient strength to consume the several percent water in the molten oxime. The reaction mass is neutralized with aqueous ammonia to a cmde caprolactam layer and a saturated solution of ammonium sulfate. Approximately 1.5 kg of the total 4.4 kg ammonium sulfate per kilogram of caprolactam is produced in this step. Purification is by multistage vacuum crystallization from aqueous solution in neatly quantitative yield. [Pg.429]

Hydroxylamine sulfate is produced by direct hydrogen reduction of nitric oxide over platinum catalyst in the presence of sulfuric acid. Only 0.9 kg ammonium sulfate is produced per kilogram of caprolactam, but at the expense of hydrogen consumption (11). A concentrated nitric oxide stream is obtained by catalytic oxidation of ammonia with oxygen. Steam is used as a diluent in order to avoid operating within the explosive limits for the system. The oxidation is followed by condensation of the steam. The net reaction is... [Pg.429]

The formation of oxime and rearrangement to caprolactam are conventional. The rearrangement produces 1.5 kg of the total 2.4 kg by-product ammonium sulfate per kilogram of caprolactam. Purification is accompHshed by vacuum distillation. A similar caprolactam process is offered by Inventa (11). [Pg.429]

The oxime is converted to caprolactam by Beckmann rearrangement neutralization with ammonia gives ca 1.8 kg ammonium sulfate per kilogram of caprolactam. Purification is by vacuum distillation. A no-sulfate, extraction process has been described, but incineration of the ammonium bisulfate recovers only sulfur values and it is not practiced commercially (14). [Pg.430]

Toray. The photonitrosation of cyclohexane or PNC process results in the direct conversion of cyclohexane to cyclohexanone oxime hydrochloride by reaction with nitrosyl chloride in the presence of uv light (15) (see Photochemical technology). Beckmann rearrangement of the cyclohexanone oxime hydrochloride in oleum results in the evolution of HCl, which is recycled to form NOCl by reaction with nitrosylsulfuric acid. The latter is produced by conventional absorption of NO from ammonia oxidation in oleum. Neutralization of the rearrangement mass with ammonia yields 1.7 kg ammonium sulfate per kilogram of caprolactam. Purification is by vacuum distillation. The novel chemistry is as follows ... [Pg.430]

Snia Viscosa. Catalytic air oxidation of toluene gives benzoic acid (qv) in ca 90% yield. The benzoic acid is hydrogenated over a palladium catalyst to cyclohexanecarboxyhc acid [98-89-5]. This is converted directiy to cmde caprolactam by nitrosation with nitrosylsulfuric acid, which is produced by conventional absorption of NO in oleum. Normally, the reaction mass is neutralized with ammonia to form 4 kg ammonium sulfate per kilogram of caprolactam (16). In a no-sulfate version of the process, the reaction mass is diluted with water and is extracted with an alkylphenol solvent. The aqueous phase is decomposed by thermal means for recovery of sulfur dioxide, which is recycled (17). The basic process chemistry is as follows ... [Pg.430]

Table 3. Estimated Worldwide Annual Production Capacity of Caprolactam ... Table 3. Estimated Worldwide Annual Production Capacity of Caprolactam ...
DSM America produces caprolactam only for merchant sales, both domestic and foreign. BASF is a customer, foUowiag acquisition of Enka s United States fiber and plastics plants, and also a captive producer of caprolactam. AUied-Signal s production is primarily captive for nylon-6 fibers and plastics, but substantial amounts are supplied to the export market. [Pg.431]

Particular reactions can occur in either or both phases or near the interface. Nitration of aromatics with HNO3-H2SO4 occurs in the aqueous phase (Albright and Hanson, eds.. Industrial and Laboratoiy Nitration.s, ACS Symposium Series 22 [1975]). An industrial example of reaction in both phases is the oximation of cyclohexanone, a step in the manufacture of caprolactam for nylon (Rod, Proc. 4th Interna-tional/6th European Symposium on Chemical Reactions, Heidelberg, Pergamon, 1976, p. 275). The reaction between butene and isobutane... [Pg.2116]

Caprolactam is preferred to w-aminocaproic acid for the manufacture of nylon 6 because it is easier to make and to purify. Over the years many routes for the manufacture of caprolactam itself have been developed and major commercial routes are summarised in Figure 18.6. Of these routes the bulk of manufacture is via cyclohexanone and cyclohexanone oxime. [Pg.482]

In one process the resulting solution is continuously withdrawn and cooled rapidly to below 75°C to prevent hydrolysis and then further cooled before being neutralised with ammonia. After phase separation, the oil phase is then treated with trichlorethylene to extract the caprolactam, which is then steam distilled. Pure caprolactam has a boiling point of 120°C at 10 mmHg pressure. In the above process 5.1 tons of ammonium sulphate are produced as a by-product per ton of caprolactam. [Pg.483]

Ammonium sulphate is increasingly produced by reaction of synthetic ammonia with sulphuric acid from the process for production of caprolactam and via a method using gypsum. Ammonium sulphate is also used as a fertilizer. [Pg.232]


See other pages where Of caprolactam is mentioned: [Pg.212]    [Pg.280]    [Pg.242]    [Pg.298]    [Pg.219]    [Pg.234]    [Pg.234]    [Pg.235]    [Pg.235]    [Pg.240]    [Pg.241]    [Pg.332]    [Pg.421]    [Pg.427]    [Pg.427]    [Pg.432]    [Pg.426]    [Pg.2106]    [Pg.487]    [Pg.504]    [Pg.422]    [Pg.432]   
See also in sourсe #XX -- [ Pg.268 , Pg.269 , Pg.270 , Pg.284 ]




SEARCH



Caprolactam

Caprolactamate

Caprolactams

© 2024 chempedia.info