Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of acrolein

When the fats are heated above 250"C they decompose with the production of acrolein, the intense smell of which is one of the best methods for detecting fats. The extraction of fats from tissues is most conveniently carried out by extraction with ether or some other solvent. [Pg.172]

HC CH(0H) CH20H. optically active. D-glyceraldehyde is a colourless syrup. May be prepared by mild oxidation of glycerol or by hydrolysis of glyceraldehyde acetal (prepared by oxidation of acrolein acetol). DL-glyceraldehyde forms colourless dimers, m.p. IBS-S C. Converted to methylglyoxal by warm dilute sulphuric acid. The enantiomers... [Pg.192]

If the original ester is a fat or oil and produces an odour of acrolein when heated, it may be a glyceride. Esters of ethylene glycol and of glycol with simple fatty acids are viscous and of high b.p. They are hydrolysed (method I) and the ethyl alcohol distilled ofl. The residue is diluted (a soap may be formed) and acidified with hydrochloric acid (Congo red paper). The acid is filtered or... [Pg.391]

Figure 1.3. Frontier orbital energies (eV) and confidents for acrolein and protonated acrolein. In the latter case the upper numbers refer to the situation where bond lengths and angles correspond to those of acrolein. The lower numbers are more suitable for a hydroxyallyl cation. The actual situation is assumed to be intermediate. The data are taken from ref. 104. Figure 1.3. Frontier orbital energies (eV) and confidents for acrolein and protonated acrolein. In the latter case the upper numbers refer to the situation where bond lengths and angles correspond to those of acrolein. The lower numbers are more suitable for a hydroxyallyl cation. The actual situation is assumed to be intermediate. The data are taken from ref. 104.
Reaction of triethylsilane with a, /3-unsaturated aldehydes catalyzed by Pd on carbon gives a /raff5-l,4-adduct as the main product. Reaction of acrolein gave the adduct in 86% yield, in which the 1,4-adduct 48 was 97% and the 1,2-adduct was 3%[44]. [Pg.517]

Addition of nucleophiles to both activated and unactivated alkenes is catalyzed by Pd(II). Addition of alcohols or AcOH to alkenes bearing EWGs is catalyzed by PdCl2(PhCN)2 to give the corresponding ethers and esters. The addition of an alcohol to the cyclic acetal of acrolein 82 to give the ether 83 is also possible with the same catalyst[64]. Amines add to the vinylic ether 84 to give 85, but not to simple alkenes[65]. [Pg.523]

Acrolein is a highly toxic material with extreme lacrimatory properties. At room temperature acrolein is a Hquid with volatiUty and flammabiUty somewhat similar to acetone but unlike acetone, its solubiUty in water is limited. Commercially, acrolein is always stored with hydroquinone and acetic acid as inhibitors. Special care in handling is required because of the flammabiUty, reactivity, and toxicity of acrolein. [Pg.122]

The physical and chemical properties of acrolein are given in Table 1. [Pg.122]

In 1957 Standard Oil of Ohio (Sohio) discovered bismuth molybdate catalysts capable of producing high yields of acrolein at high propylene conversions (>90%) and at low pressures (12). Over the next 30 years much industrial and academic research and development was devoted to improving these catalysts, which are used in the production processes for acrolein, acryUc acid, and acrylonitrile. AH commercial acrolein manufacturing processes known today are based on propylene oxidation and use bismuth molybdate based catalysts. [Pg.123]

The significance of industrial acrolein production may be clearer if one considers the two major uses of acrolein—direct oxidation to acryUc acid and reaction to produce methionine via 3-methyhnercaptopropionaldehyde. In acryUc acid production, acrolein is not isolated from the intermediate production stream. The 1990 acryUc acid production demand in the United States alone accounted for more than 450,000 t/yr (28), with worldwide capacity approaching 1,470,000 t/yr (29). Approximately 0.75 kg of acrolein is required to produce one kilogram of acryUc acid. The methionine production process involves the reaction of acrolein with methyl mercaptan. Worldwide methionine production was estimated at about 170,000 t/yr in 1990 (30). (See Acrylic ACID AND DERIVATIVES AmINO ACIDS, SURVEY.)... [Pg.124]

Hydroquinone can be deterrnined spectrophotometricaHy at 292 nm in methanol after a sample is evaporated to dryness to remove the interference of acrolein. An alternative method is high performance Hquid chromatography on 10-p.m LiChrosorb RP-2 at ambient temperature with 2.0 mL/min of 20%(v/v) 2,2,4-trimethylpentane, 79.20% chloroform, and 0.80 % methanol with uv detection at 292 nm. [Pg.124]

Oxidation. Acrolein is readily oxidized to acryUc acid, [79-10-7] by passing a gaseous mixture of acrolein, air, and steam over a catalyst... [Pg.124]

Virtually all of the acryUc acid produced in the United States is made by the oxidation of propylene via the intermediacy of acrolein. [Pg.124]

Reduction. Because of a lack of discrimination between the double bond and carbonyl moieties, direct hydrogenation of acrolein leads to the production of mixtures containing propyl alcohol, C HgO [71-28-8] propionaldehyde, C H O [123-38-6J, and aHyl alcohol, C H O [107-18-16]. Both the... [Pg.124]

The vapor-phase reduction of acrolein with isopropyl alcohol in the presence of a mixed metal oxide catalyst yields aHyl alcohol in a one-pass yield of 90.4%, with a selectivity (60) to the alcohol of 96.4%. Acrolein may also be selectively reduced to yield propionaldehyde by treatment with a variety of reducing reagents. [Pg.124]

Reactions of acrolein with alcohols producing high yields of alkoxypropionaldehyde acetals are also known. Examples of these are displayed in Table 7 (70). The alkoxypropionaldehyde acetals may be useful as solvents or as intermediates in the synthesis of other useful compounds. [Pg.126]

Addition of Mercaptans. One of the largest uses of acrolein is the production of 3-methylmercaptopropionaldehyde [3268-49-3] which is an intermediate in the synthesis of Dj.-methionine [59-51-8] an important chicken feed supplement. [Pg.126]

Methylmercaptopropionaldehyde is also used to make the methionine hydroxy analog CH2SCH2CH2CH(OH)COOH [583-91 -5] which is used commercially as an effective source of methionine activity (71). AH commercial syntheses of methionine and methionine hydroxy analog are based on the use of acrolein as a raw material. More than 170,000 tons of this amino acid are produced yearly (30) (see Amino acids). One method for the preparation of methionine from acrolein via 3-methyhnercaptopropionaldehyde is as follows. [Pg.126]

Methyl mercaptan adds to acrolein in neatly quantitative yields in the presence of a variety of basic catalysts (72,73). Other aLkylmercaptopropionaldehydes produced by the reaction of acrolein with a mercaptan are known. Table 8 Hsts a variety of these and their boiling points (74). [Pg.127]

Reaction with Ammonia. Although the Hquid-phase reaction of acrolein with ammonia produces polymers of Htde interest, the vapor-phase reaction, in the presence of a dehydration catalyst, produces high yields of [ -picoline [108-99-6] and pyridine [110-86-4] n.2L mXio of approximately 2/1. [Pg.127]

Acrolein a.s Dienophile. The participation of acrolein as the dienophile in Diels-Alder reactions is, in general, an exothermic process. Dienes such as cyclopentadiene and l-dieth5laniino-l,3-butadiene react rapidly with acrolein at room temperature. [Pg.127]

Production of Acrolein Dimer. Acting as both the diene and dienoplule, acrolein undergoes a Diels-Alder reaction with itself to produce acrolein dimer, 3,4-dihydro-2-formyl-2id-pyran, CgHg02 [100-73-2], At room temperature the rate of dimerization is very slow. However, at elevated temperatures and pressures the dimer may be produced in single-pass yields of 33% with selectivities greater than 95%. [Pg.128]

Acrolein at a concentration of <500 ppm is also used to protect Hquid fuels against microorganisms. The dialkyl acetals of acrolein are also useful in this apphcation. In addition, the growth of algae, aquatic weeds, and moUusks in recirculating process water systems is also controlled by acrolein. [Pg.128]

A small amount of acrolein may be fatal if swallowed. It produces bums of the mouth, throat, esophagus, and stomach. Signs and symptoms of poisoning may include severe pain in the mouth, throat, chest, and abdomen nausea vomiting, which may contain blood diarrhea weakness and dizziness and coUapse and coma (99). [Pg.128]

There is no specific antidote for acrolein exposure. Treatment of exposure should be directed at the control of symptoms and the clinical condition. Most of the harmful effects of acrolein result from its highly irritating and corrosive properties. [Pg.128]

Acrolein reacts slowly in water to form 3-hydroxypropionaldehyde and then other condensation products from aldol and Michael reactions. Water dissolved in acrolein does not present a hazard. The reaction of acrolein with water is exothermic and the reaction proceeds slowly in dilute aqueous solution. This will be hazardous in a two-phase adiabatic system in which acrolein is suppHed from the upper layer to replenish that consumed in the lower, aqueous, layer. The rate at which these reactions occur will depend on the nature of the impurities in the water, the volume of the water layer, and the rate... [Pg.128]

Dimerization of acrolein is very slow at ambient temperatures but it can become a mnaway reaction at elevated temperature (ca 90°C), a consideration in developing protection against fire exposure of stored acrolein. [Pg.129]

Acrolein produced in the United States is stabilized against free-radical polymerization by 1000—2500 ppm of hydroquinone and is protected somewhat against base-catalyzed polymerization by about 100 ppm of acetic acid. To ensure stabiUty, the pH of a 10% v/v solution of acrolein in water should be below 6. [Pg.129]

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

Even small spills and leaks (<0.45 kg) require extreme caution. Unless the spill is contained in a fume hood, do not remain in or enter the area unless equipped with full protective equipment and clothing. Self-contained breathing apparatus should be used if the odor of acrolein or eye irritation is sensed. Small spills may be covered with absorbant, treated with aqueous alkalies, and flushed with water. [Pg.129]

Liquid-Phase Oxidation of Acrolein. As discussed before, the most attractive process for the manufacture of acrylates is based on the two-stage, vapor-phase oxidation of propylene. The second stage involves the oxidation of acrolein. Considerable art on the Hquid-phase oxidation of acrolein (17) is available, but this route caimot compete with the vapor-phase technology. [Pg.156]

Historically, the development of the acrylates proceeded slowly they first received serious attention from Otto Rohm. AcryUc acid (propenoic acid) was first prepared by the air oxidation of acrolein in 1843 (1,2). Methyl and ethyl acrylate were prepared in 1873, but were not observed to polymerize at that time (3). In 1880 poly(methyl acrylate) was reported by G. W. A. Kahlbaum, who noted that on dry distillation up to 320°C the polymer did not depolymerize (4). Rohm observed the remarkable properties of acryUc polymers while preparing for his doctoral dissertation in 1901 however, a quarter of a century elapsed before he was able to translate his observations into commercial reaUty. He obtained a U.S. patent on the sulfur vulcanization of acrylates in 1912 (5). Based on the continuing work in Rohm s laboratory, the first limited production of acrylates began in 1927 by the Rohm and Haas Company in Darmstadt, Germany (6). Use of this class of compounds has grown from that time to a total U.S. consumption in 1989 of approximately 400,000 metric tons. Total worldwide consumption is probably twice that. [Pg.162]

Since aHyl chloride could be converted to glycerol by several routes, the synthesis of glycerol from propylene [115-07-1] became possible. Propylene can also be oxidized in high yields to acrolein [107-02-8]. Several routes for conversion of acrolein to glycerol are shown in Figure 1. [Pg.346]


See other pages where Of acrolein is mentioned: [Pg.160]    [Pg.446]    [Pg.79]    [Pg.4]    [Pg.309]    [Pg.122]    [Pg.122]    [Pg.128]    [Pg.128]    [Pg.128]    [Pg.128]    [Pg.128]    [Pg.129]    [Pg.148]    [Pg.153]    [Pg.347]    [Pg.349]    [Pg.390]   
See also in sourсe #XX -- [ Pg.115 , Pg.141 , Pg.163 ]




SEARCH



Acrolein

Acroleine

© 2024 chempedia.info