Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

O-Alkylation selectivity

Protection of the nitrogen in 4 faced the classical N- versus O-alkylation selectivity issue, which was solved by selection of the solvent system. The original protecting group, pMB, was replaced with 9-anthrylmethyl (ANM), which provided the best enantioselectivity with the newly discovered asymmetric addition to the ketimine. [Pg.3]

The alkylation of 2-pyridone was effected under mild conditions by use of cesium fluoride. Benzyl and allyl chlorides furnished the A-alkylated product selectively, while secondary alkyl iodides gave O-alkylation selectively <95SL845>. [Pg.218]

Vapor phase catalytic alkylation of phenols with methanol was carried out on various phosphates as catalysts. The best activity and selectivity was observed on boron, rare-earth and niobium phosphate. With boron phosphate, the reaction is very selective for O-alkylation even at high temperature. On this catalyst o-methoxy-phenol is selectively obtained from 1-2-dihydroxybenzene. With rare-earth phosphate calcinated at 400°C and with niobium phosphate, O-alkylation selectivity decreases with an increase of reaction temperature. For rare-earth phosphates it is possible to improve the selectivity by calcination at higher temperature or by a wetness impregnation of cesium hydrogenophosphate. An explanation of these results is proposed. [Pg.48]

Calix[n]arenes 1-3 were used as inverse PT catalysts in the alkylation of active methylene compounds with alkyl halides in aqueous NaOH solutions,and in aldol-type eondensation and Michael addition reactions. In the aikylation of phenylacetone with octyl bromide, the IPTC procedure enhanced the alkylation versus hydrolysis and C versus O alkylation selectivities with respect to those observed xmder classical PTC reactions in the presence of tetrabutylammonium bromide (TBAB) or hexadecyltributylammonium bromide (HTPB). Moreover, the aqueous catalyst solution was easily separated from the organic phase eontaining the products, and no organic solvent was required. In the case of the aldol-type condensation of benzaldehyde with indene or acetophenone in aqueous NaOH (Fig. 9), IPTC reaetions eatalyzed by I were compared with those conducted in aqueous micelles in the presence of cetyltrimethylammonium bromide (CTAB) as the sufactant. Although selectivities and yields were similar, the IPTC proeedure avoided the formation of emulsions, thus faciUtating product separation and catalyst recovery. In the light of the results obtained, water-soluble calix[ ]arenes 1-3 were proposed... [Pg.1046]

Sulfonic acids are prone to reduction with iodine [7553-56-2] in the presence of triphenylphosphine [603-35-0] to produce the corresponding iodides. This type of reduction is also facile with alkyl sulfonates (16). Aromatic sulfonic acids may also be reduced electrochemicaHy to give the parent arene. However, sulfonic acids, when reduced with iodine and phosphoms [7723-14-0] produce thiols (qv). Amination of sulfonates has also been reported, in which the carbon—sulfur bond is cleaved (17). Ortho-Hthiation of sulfonic acid lithium salts has proven to be a useful technique for organic syntheses, but has Httie commercial importance. Optically active sulfonates have been used in asymmetric syntheses to selectively O-alkylate alcohols and phenols, typically on a laboratory scale. Aromatic sulfonates are cleaved, ie, desulfonated, by uv radiation to give the parent aromatic compound and a coupling product of the aromatic compound, as shown, where Ar represents an aryl group (18). [Pg.96]

Other approaches to inhibiting intramolecular cycli2ations of erythromycin have also proven successhil. Erom a series of O-alkyl derivatives of erythromycin, clarithromycin (6-0-methylerythromycin) (37) was selected for clinical development (146,147). Another approach replaced the C-8 proton of erythromycin with duorine, which was accompHshed by both chemical and bioconversion methods to yield durithromycin (38) (148). [Pg.100]

The solvent can also affect regioselectivity. Consider O- vs C-alkylation of phenoxide ion with allyl chloride or bromide. In water, with allyl chloride the O- to C-alkylation ratio is 49 41 with phenol as a solvent it is 22 78 with methanol, dimethylformamide, and dioxane 100% O-alkylation is achieved. The selective solvation of the more electronegative O by the more protic solvents perhaps leads to some C-alkylations. [Pg.180]

Decarboxylation of 16 using the previously described NMP, lithium chloride method provided the dione 32. Selective reduction of the least hindered carbonyl was readily effected using sodium borohydride providing 33. Hydroxymethylenation followed by O-alkylation of the butenolide unit by standard procedures provided the A-B-D-ring analog 34a,b (racemic mixture of epimers). [Pg.443]

The present work deals with the study of the liquid phase phenol alkylation by (-butanol over the three types of catalysts derived from MWW-precursor MCM-22, MCM-36 and ITQ-2. It was assumed that by pillaring and/or delamination the contribution of acid sites located on the hemicages will increase and it could be evidenced during the alkylation of phenol by (-butanol, process involving large reaction intermediates and products which are difficult to be accommodated within sinusoidal channels. The reaction pathway involves many parallel and/or successive steps, the main reactions being O-alkylation and C-alkylation. The catalytic activity and selectivity of these materials are discussed. A general scheme of the process is proposed on the basis of the structural and acidic features of the catalysts. [Pg.357]

Another problem with the reaction of phenols with aziridines is the selectivity between O-alkylation vs C-alkylation. A recent report has identified that the use of (ArO)3B selects for C-alkylation <06OL2627>. Most of the examples reported in this paper showed less than 5% of the O-alkylation product. What is interesting about this report is the stereochemistry of the product. While the mechanism is not known, the product is formally an SNl type product. Generally less than 5% was the product of inversion of configuration (the Sn2 product). In addition to the A-tosyl, both the A-Cbz and A-Dpp aziridines gave excellent yields of aziridine-opened product. [Pg.86]

It is necessary for the intermediate cation or complex to bear considerable car-bocationic character at the carbon center in order for effective hydride transfer to be possible. By carbocationic character it is meant that there must be a substantial deficiency of electron density at carbon or reduction will not occur. For example, the sesquixanthydryl cation l,26 dioxolenium ion 2,27 boron-complexed imines 3, and O-alkylated amide 4,28 are apparently all too stable to receive hydride from organosilicon hydrides and are reportedly not reduced (although the behavior of 1 is in dispute29). This lack of reactivity by very stable cations toward organosilicon hydrides can enhance selectivity in ionic reductions. [Pg.7]

Hydroxythiadiazole and neat trimethyl orthoacetate showed a 20 80 ratio of N- versus O-alkylation products by H NMR <2002EJ01763>. The acidic hydroxyl group of thiadiazole 130 can be selectively protected as the benzyl ether 113 (Equation 22) <2004TL5441>. Nonhydrogenative debenzylation of the bisbenzyl thiadiazole 116 was achieved with boron tribromide to afford the bis-l,2,5-thiadiazole 131 (Equation 23) <2004TL5441>. [Pg.540]

Because of the irreversibility of the O-alkylation reaction, kinetic regio-and stereo-control is required for selective product-formation. Therefore, selective formation of either a or / product seemed to be unattainable. [Pg.25]

C). The substrate is deprotonated [pK(PhCH2COOMe) 22.7] and trapped by an alkyliodide (—78°C). This procedure leads selectively to mono a-alkylation (81-99%) [103]. Selective monoalkylation of 8-diketones in 70 to 95% yield was obtained by a similar procedure, and only in a few cases (bulky secondary alkylhalides) were the O-alkylated substrate found as a side product. Tetraalky-lammonium counter cations were necessary in stabilizing the enolate Na+ counter cations did not give selective C-alkylation [104]. [Pg.475]

As shown in Scheme 4, alkynyl metallates derived from propynoic acid amides can also be used as source of the allenylidene C3 unit, their reactions with the tetrahydrofuran solvates [M(CO)5(THF)] affording the N/O-substimted allenylidene complexes 6 after selective O-alkylation with [R30][BF4] [29]. [Pg.224]

Selective O-alkylation of hydroxylamines and their derivatives can be done through deprotonation of the OH group. O-Alkylation (equation 14) of iV-substituted hydrox-amic acid ° (e.g. 21) followed by hydrolysis of the resultant O-alkylation product 22 is the most commonly used approach. Since alkylation of Af-unsubstimted hydrox-amic acid results in a mixture of O- and A-alkylation products, the corresponding O-alkylhydroxylamines are better prepared through alkylation of Af-hydroxysuccinimide or Af-hydroxyphthalimide followed by hydrolysis. [Pg.123]

Horie, T. et al., Studies of the selective O-alkylation and dealkylation of flavonoids. XIV. A convenient method for synthesizing 5,6,7,8-trihydroxy-3-methoxyflavones from 6-hydroxy-3,5, 7-trimethoxyflavones, Bull. Chem. Soc. Jpn, 66, 877, 1993. [Pg.717]

One of the factors directing the alkylation of an enolate is the Jt-facial selectivity. The differences in reactivity of the two diastereotopic faces of the enolate, due to steric and electronic features, contribute to the steric control of the alkylation (for extensive reviews, see refs 1, 4, and 30). Likewise, stereoelectronic features are important control elements for C- versus O-alkylation, as illustrated by the cyclization of enolates 1 and 3 via intramolecular nucleophilic substitution 39. [Pg.703]

Piperazine-2,5-diones, in which both amino acid units are primary, lead to bislactim ethers on O-alkylation with Meerwein s reagents. No selectivity in this reaction has been demonstrated so far. Such bislactim ethers (171) have been prepared and extensively used by Schollkopf and his school [79AG(E)863, and later papers]. During the preparation of these bislactim ethers, neutralization of the initially formed bis-tetrafluoroborate salt is carried out with phosphate buffer to avoid racemization. [Pg.255]


See other pages where O-Alkylation selectivity is mentioned: [Pg.125]    [Pg.294]    [Pg.283]    [Pg.210]    [Pg.125]    [Pg.294]    [Pg.283]    [Pg.210]    [Pg.301]    [Pg.120]    [Pg.399]    [Pg.441]    [Pg.145]    [Pg.357]    [Pg.359]    [Pg.89]    [Pg.138]    [Pg.110]    [Pg.515]    [Pg.25]    [Pg.75]    [Pg.247]    [Pg.28]    [Pg.31]    [Pg.47]    [Pg.1053]    [Pg.438]    [Pg.44]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Alkylation selective

Alkylation selectivity

O selective

O-alkyl

O-alkylation

O-alkylations

© 2024 chempedia.info