Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen pollution estimation

Within 6 months after enactment of the Qean Air Act Amendments of 1990, and at least every 3 years thereafter, the Administrator shall review and, if necessary, revise, the methods ( emission factors ) used for purposes of this Act to estimate the quantity of emissions of carbon monoxide, volatile organic compounds, and oxides of nitrogen from sources of such air pollutants (including area sources and mobile sources). In addition, the Administrator shall permit any person to demonstrate improved emissions estimating techniques, and following approval of such techniques, the Administrator shall authorise the use of such techniques. Any such technique may be approved only after appropriate public participation. Until the Administrator has completed the revision required by this section, nothing in this section shall be construed to affect the validity of emission factors established by the Administrator before the date of the enactment of the Clean Air Act Amendments of 1990. [Pg.405]

The UK Environment Agency deals with over 6000 oil pollution incidents each year. One estimate suggests tliat tlie cheiTtical industry contributes to 50% of all ah pollution witli proportions approximating to sulphur dioxide (36%), carbon dioxide (28%), nitrogen oxides (18%), carbon monoxide (14%) and black smoke (10%). Motor spirit refining is responsible for ca 26% of emissions of volatile organic compounds to the atmosphere. In 1996 there were over 20 000 reports of water pollution incidents with 155 successful prosecutions. [Pg.3]

Burning fossil fuels can release air pollutants such as carbon dioxide, sulfur oxides, nitrogen oxides, ozone, and particulate matter. Sulfur and nitrogen oxides contribute to acid rain ozone is a component of urban smog, and particulate matter affects respiratory health. In fact, several studies have documented a disturbing correlation between suspended particulate levels and human mortality. It is estimated that air pollution may help cause 500,000 premature deaths and millions of new respiratory illnesses each year. [Pg.187]

In April of 1998, the EPA published a final rule for emission of oxides of nitrogen (NOx), hydrocarbons (EIC), carbon monoxide (CO), particulate matter (PM), and smoke opacity for newly manufactured and rcmanufacturcd locomotives. The rulemaking took effect in 2000 and is estimated by the EPA to cost the railroads 80 million per year—about 163 per ton of NOx reduced, according to EPA figures. The emissions standards for the several pollutants will be implemented in three tiers—for locomotives... [Pg.730]

Nitrogen Dioxide (NO2) Is a major pollutant originating from natural and man-made sources. It has been estimated that a total of about 150 million tons of NOx are emitted to the atmosphere each year, of which about 50% results from man-made sources (21). In urban areas, man-made emissions dominate, producing elevated ambient levels. Worldwide, fossil-fuel combustion accounts for about 75% of man-made NOx emissions, which Is divided equally between stationary sources, such as power plants, and mobile sources. These high temperature combustion processes emit the primary pollutant nitric oxide (NO), which Is subsequently transformed to the secondary pollutant NO2 through photochemical oxidation. [Pg.174]

The extent of gas-to-aerosol conversion of secondary pollutants can be estimated by measuring gas particle distribution factors for carbon, nitrogen, and sulfur species. For example, /c = P/ P + G), where P = particulate organic carbon ng/m as carbon) and G = gas-phase... [Pg.52]

Ka can be defined as a gas-phase transfer coefficient, independent of the liquid layer, when the boundary concentration of the gas is fixed and independent of the average gas-phase concentration. In this case, the average and local gas-phase mass-transfer coefficients for such gases as sulfur dioxide, nitrogen dioxide, and ozone can be estimated from theoretical and experimental data for deposition of diffusion-range particles. This is done by extending the theory of particle diffusion in a boundary layer to the case in which the dimensionless Schmidt number, v/D, approaches 1 v is the kinematic viscosity of the gas, and D is the molecular diffusivity of the pollutant). Bell s results in a tubular bifurcation model predict that the transfer coefficient depends directly on the... [Pg.300]

Worldwide, the amount of energy available from coal is estimated to be about ten times greater than the amount available from all petroleum and natural gas reserves combined. Coal is also the filthiest fossil fuel because it contains large amounts of such impurities as sulfur, toxic heavy metals, and radioactive isotopes. Burning coal is therefore one of the quickest ways to introduce a variety of pollutants into the air. More than half of the sulfur dioxide and about 30 percent of the nitrogen oxides released into the atmosphere by humans come from the combustion of coal. As with other fossil fuels, the combustion of coal also produces large amounts of carbon dioxide. [Pg.643]

Countries turning to nuclear fission energy have decreased their dependence on fossil fuels and have diminished their output of carbon dioxide, sulfur oxides, nitrogen oxides, heavy metals, airborne particulates, and other pollutants. Money that would have been spent on foreign oil payments has been saved. It is estimated, for example, that nuclear fission energy has saved the United States 150 billion in foreign oil payments. [Pg.648]

Phase 2 RFG was introduced in the San Francisco Bay Area and pollutant emissions were measured at the 1100 m long Caldecott tunnel during the summers of 1994 and 1997. Between the 1994 to 1997, emissions of carbon monoxide decreased by 31%, non-methane volatile organic compounds (VOC) decreased by 43%, nitrogen oxides decreased by 18%, and vehicle emission of benzene was estimated to be a 30 to 40% reduction. The use of RFG increased formaldehyde... [Pg.288]


See other pages where Nitrogen pollution estimation is mentioned: [Pg.245]    [Pg.1570]    [Pg.109]    [Pg.370]    [Pg.500]    [Pg.17]    [Pg.269]    [Pg.730]    [Pg.144]    [Pg.290]    [Pg.53]    [Pg.7]    [Pg.8]    [Pg.15]    [Pg.47]    [Pg.233]    [Pg.176]    [Pg.1197]    [Pg.782]    [Pg.53]    [Pg.150]    [Pg.131]    [Pg.409]    [Pg.259]    [Pg.154]    [Pg.41]    [Pg.8]    [Pg.1082]    [Pg.1327]    [Pg.1718]    [Pg.1727]    [Pg.500]    [Pg.527]    [Pg.241]    [Pg.9]    [Pg.269]    [Pg.110]    [Pg.111]    [Pg.173]   


SEARCH



Nitrogen, estimation

Pollution nitrogen

© 2024 chempedia.info