Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitro compounds ethers

Adsorption TLC selection of the mobile phase is conditioned by sample and stationary-phase polarities. The following polarity scale is valid for various compound classes in NPTLC in decreasing order of K values carboxylic acids>amides>amines>alcohols>aldehydes > ketones > esthers > nitro compounds > ethers > hal-ogenated compounds > aromatics >olefins > saturated hydrocarbons > fluorocarbons. For example, retention on silica gel is controlled by the number and functional groups present in the sample and their spatial locations. Proton donor/acceptor functional groups show the greatest retention, followed by dipolar molecules, and, finally, nonpolar groups. [Pg.618]

Aliphatic Hydrocarbons, Halogenated Hydrocarbons, Amides, Nitro Compounds, Ethers, and Esters 661... [Pg.661]

HALOGENATED HYDROCARBONS, AMIDES, NITRO COMPOUNDS, ETHERS, AND ESTERS ... [Pg.662]

Carbonylation and Homologation of Alcohols, Halides, and Nitro Compounds, Ethers, Carboxylic Acids,... [Pg.355]

Place about 1 g. of the nitro-hydrocarbon in a boiling-tube and add 5 ml. of cone. HCl and several pieces of granulated tin. Warm the mixture and shake continuously to break up the oily drops of the nitro-compound. When all the oil has disappeared (about 3 minutes heating) pour off the liquid from any undissolved tin into a 100 ml. conical flask. Cool and add cautiously 30% aqueous NaOH solution until the precipitate formed redissolves to give a dark-coloured solution. Cool the latter thoroughly and shake well with about 15 ml. of ether. Separate the ethereal layer in a separating-funnel, wash with water and evaporate the ether in a basin on a previously heated water-bath in a fume-cupboard atoay from all flames. The residue is either... [Pg.385]

Reduction of a nitro compound to a primary amine. In a 50 ml. round-bottomed or conical flask fitted with a reflux condenser, place 1 g. of the nitro compound and 2 g. of granulated tin. Measure out 10 ml. of concentrated hydrochloric acid and add it in three equal portions to the mixtiue shake thoroughly after each addition. When the vigorous reaction subsides, heat under reflux on a water bath until the nitro compound has completely reacted (20-30 minutes). Shake the reaction mixture from time to time if the nitro compound appears to be very insoluble, add 5 ml. of alcohol. Cool the reaction mixture, and add 20-40 per cent, sodium hydroxide solution imtil the precipitate of tin hydroxide dissolves. Extract the resulting amine from the cooled solution with ether, and remove the ether by distillation. Examine the residue with regard to its solubility in 5 per cent, hydrochloric acid and its reaction with acetyl chloride or benzene-sulphonyl chloride. [Pg.1076]

Reduction of a nitrosamine to a secondary amine. Proceed as for a nitro compound. Determine the solubility of the residue after evaporation of the ether and also its behaviour towards benzenesulphonyl (or p-toluenesulphonyl) chloride. [Pg.1076]

Olah s original preparative nitrations were carried out with mixtures of the aromatic compound and nitronium salt alone or in ether, and later with sulpholan as the solvent. High yields of nitro-compounds were obtained from a wide range of aromatic compounds, and the anhydrous conditions have obvious advantages when functional groups such as cyano, alkoxycarbonyl, or halogenocarbonyl are present. The presence of basic fimctions raises difficulties with pyridine no C-nitration occurs, i-nitropyridinium being formed. ... [Pg.61]

Substances that form carbanions, such as nitro compounds, hydrocyanic acid, malonic acid, or acetylacetone, react with vinyl ethers in the presence of water, replacing the alkyl group under mild conditions (245). [Pg.116]

Aromatic hydrocarbons can be purified as their picrates using the procedures described for amines. Instead of picric acid, 1,3,5-trinitrobenzene or 2,4,7-trinitrofluorenone can also be used. In all these cases, following recrystallisation, the hydrocarbon can be isolated either as described for amines or by passing a solution of the adduct through an activated alumina column and eluting with toluene or petroleum ether. The picric acid and nitro compounds are more strongly adsorbed on the column. [Pg.58]

The common impurities found in amines are nitro compounds (if prepared by reduction), the corresponding halides (if prepared from them) and the corresponding carbamate salts. Amines are dissolved in aqueous acid, the pH of the solution being at least three units below the pKg value of the base to ensure almost complete formation of the cation. They are extracted with diethyl ether to remove neutral impurities and to decompose the carbamate salts. The solution is then made strongly alkaline and the amines that separate are extracted into a suitable solvent (ether or toluene) or steam distilled. The latter process removes coloured impurities. Note that chloroform cannot be used as a solvent for primary amines because, in the presence of alkali, poisonous carbylamines (isocyanides) are formed. However, chloroform is a useful solvent for the extraction of heterocyclic bases. In this case it has the added advantage that while the extract is being freed from the chloroform most of the moisture is removed with the solvent. [Pg.63]

Dissolved in alkali, extracted with ether (discarded), then the aqueous phase was acidified with hydroxylamine hydrochloride, and the nitro compound fractionally distd under reduced pressure. [Pearson and Dillon J Am Chem Soc 75 2439 1953.]... [Pg.165]

By treating this blue nitrosite, which Deussen calls )3-caryophyllene nitrosite, with alcoholic potash at 0°, it is converted to a colourless isomer, melting at 139°, which Deussen terms )3-caryophyllene isonitrosite. By treatment with boiling petroleum ether decomposition takes place and a compound melting at 159° is formed, of formula not yet established, and a nitro-compound of the formula Cj5H22N204, melting at 130 5°. [Pg.88]

Musk ambrette, which is usually regarded as the finest of all the artificial musks, is a nitro-compound of the methyl ether of butyl-meta-cresol, usually described as dinitro-butyl- ieia-cresol methyl ether. It should melt at 85°. [Pg.290]

Platinum may be more useful than palladium in reduction of nitro compounds containing functions easily reduced by palladium. Hydrogenation of I over 5% Pd-on-C was nonselective with hydrogenolysis of the benzyl ethers competing with nitro hydrog ation, but over PtO in ethanol 2 was obtained in 96% yield (4). [Pg.104]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

Bowman and Symons145 probed the stability of a series of radical anions involved in the SRN1 substitution for a-substituted aliphatic nitro-compounds [Me2C(X)N02] by studying with ESR at 77 K the succession of events following electron capture by Me2C(X)N02. The radical anions were more concentrated in an ether matrix than in an... [Pg.1076]

The radical alkylation of ketones is achieved by their conversion into the desired N-silyloxy enamines 81 (Scheme 13). The reaction of 81 with diethyl bromomalonate in the presence of EtsB (0.5 equiv) in benzene was performed in open air and stirred at room temperature for 3h. With nitro compounds it is achieved by their conversion into the desired ]V-bis(silyloxy)enamines (82) (Scheme 13). When the reaction is carried out with 82 and alkyl iodides with an electron-withdrawing substituent at the a-position, using V-70 as radical initiator (2,2 -azobis(4-methoxy-2,4-dimethylvaleronitrile)), it underwent a clean radical alkylation reaction to yield an oxime ether. Successful radical alkylation of... [Pg.150]


See other pages where Nitro compounds ethers is mentioned: [Pg.252]    [Pg.843]    [Pg.1]    [Pg.252]    [Pg.843]    [Pg.1]    [Pg.529]    [Pg.102]    [Pg.306]    [Pg.268]    [Pg.119]    [Pg.262]    [Pg.145]    [Pg.55]    [Pg.68]    [Pg.295]    [Pg.1031]    [Pg.71]    [Pg.17]    [Pg.190]    [Pg.702]    [Pg.1327]    [Pg.339]    [Pg.22]    [Pg.176]    [Pg.586]   
See also in sourсe #XX -- [ Pg.3 , Pg.8 , Pg.179 , Pg.235 ]




SEARCH



Ethers compounds

© 2024 chempedia.info