Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

And nitric acid

Carius method The quantitative determination of S and halogens in covalent (organic) compounds by complete oxidation of the compound with cone, nitric acid and subsequent estimation of precipitated AgX or BaS04. [Pg.83]

Strong oxidising acids, for example hot concentrated sulphuric acid and nitric acid, attack finely divided boron to give boric acid H3CO3. The metallic elements behave much as expected, the metal being oxidised whilst the acid is reduced. Bulk aluminium, however, is rendered passive by both dilute and concentrated nitric acid and no action occurs the passivity is due to the formation of an impervious oxide layer. Finely divided aluminium does dissolve slowly when heated in concentrated nitric acid. [Pg.143]

Lead dioxide is slightly soluble in concentrated nitric acid and concentrated sulphuric acid, and it dissolves in fused alkalis. It therefore has amphoteric properties, although these are not well characteri.sed since it is relatively inert. [Pg.194]

Arsenic dissolves in concentrated nitric acid forming arsenicfV) acid, H3ASO4, but in dilute nitric acid and concentrated sulphuric acid the main product is the arsenic(III) acid, HjAsOj. The more metallic element, antimony, dissolves to form the (III) oxide Sb O, with moderately concentrated nitric acid, but the (V) oxide Sb205 (structure unknown) with the more concentrated acid. Bismuth, however, forms the salt bismulh(lll) nitrate Bi(N03)3. 5H,0. [Pg.212]

Uses of ammonia and ammonium compounds. Most of the ammonia produced is used in the manufaeture of nitrogenous fertilisers such as ammonium sulphate. Other uses include nitric acid and synthetic fibre and plastic manufacture. [Pg.222]

Dinitrogeri pentoxide is the anhydride of nitric acid and is prepared by removing water from pure nitric acid by means of phosphorus (V) oxide. It is a crystalline solid having the ionic structure of (N02) (N03) , nitronium nitrate (the nitronium ion is mentioned later). It decomposes above 273 K, thus ... [Pg.234]

In aqueous solution arsenic(lll) oxide is a reducing agent being oxidised to arsenate(V) by halogens, chlorate(I), nitric acid and even iron(III) chloride. [Pg.236]

With very dilute nitric acid and magnesium, some hydrogen is evolved. [Pg.241]

Nitrous acid is unstable, decomposing to give nitric acid and evolving nitrogen oxide ... [Pg.243]

Add a few drops of the distillate to an aqueous silver nitrate solution containing some dilute nitric acid and warm gently no silver chloride should be precipitated, indicating the complete absence of unchanged acetyl chloride. [Pg.116]

Prepare a mixture of 25 ml. of concentrated nitric acid and 80 ml. of water in a 750 ml. flat-bottomed flask for which a steam-distillation fitting is available for subsequent use. Warm a mixture of 20 g. of phenol and 15 ml. of water gently in a small conical flask until the phenol is molten on shaking the... [Pg.170]

Principle. A known weight of the substance is heated with fuming nitric acid and silver nitrate in a sealed tube. The organic material is thus oxidised to carbon dioxide and water, whilst the halogen is converted quantitatively into the corresponding silver halide. The latter js subsequently washed out of the tube, filtered and weighed. [Pg.416]

Alternatively, to prevent undue hydrolysis, make the solution just alkaline to phcnolphthalein with sodium hydroxide, then just acid with dilute nitric acid, and finally, add a slight excess of ammonia. [Pg.446]

Fit a 3-litre rovmd-bottomed flask with a long reflux condenser and a dropping funnel (1). Place a mixture of 400 ml. of concentrated nitric acid and 600 ml. of water in the flask and heat nearly to boiling. Allow 100 g. (116 ml.) of cycZopentanone (Section 111,73) to enter the hot acid dropwise, taking care that the first few drops are acted upon by the acid, otherwise an explosion may occur the addition is complete in 1 hour. Much heat is evolved in the reaction so that the flame beneath the flask must be considerably lowered. Omng to the evolution of nitrons fumes, the reaction should be carried out in the fume cupboard or the fumes... [Pg.493]

The corks are badly attacked by the nitric acid and must be renewed in each run. An asbestos stopper, prepared as described in Section III, 161, can be used repeatedly. [Pg.494]

Nitrations are usually carried out at comparatively low temperatures at higher temperatures there may be loss of material because of the oxidising action of the nitric acid. For substances which do not nitrate readily with a mixture of concentrated nitric and sulphuric acids ( mixed acid ), the intensity of the reaction may be increased inler alia by the use of fuming sulphuric acid (containing up to 60 per cent, of sulphur trioxide) or by fuming nitric acid. Thus nitrobenzene is converted by a mixture of fuming nitric acid and concentrated sulphuric acid into about 90 per cent, of wi-dinitrobenzene and small amounts of the o- and p-isomers the latter are eliminated in the process of recrystallisation ... [Pg.523]

A brief account of aromatic substitution may be usefully given here as it will assist the student in predicting the orientation of disubstituted benzene derivatives produced in the different substitution reactions. For the nitration of nitrobenzene the substance must be heated with a mixture of fuming nitric acid and concentrated sulphuric acid the product is largely ni-dinitrobenzene (about 90 per cent.), accompanied by a little o-dinitrobenzene (about 5 per cent.) which is eliminated in the recrystallisation process. On the other hand phenol can be easily nitrated with dilute nitric acid to yield a mixture of ortho and para nitrophenols. It may be said, therefore, that orientation is meta with the... [Pg.524]

Add 25 g. of finely-powdered, dry acetanilide to 25 ml. of glacial acetic acid contained in a 500 ml. beaker introduce into the well-stirred mixture 92 g. (50 ml.) of concentrated sulphuric acid. The mixture becomes warm and a clear solution results. Surround the beaker with a freezing mixture of ice and salt, and stir the solution mechanically. Support a separatory funnel, containing a cold mixture of 15 -5 g. (11 ml.) of concentrated nitric acid and 12 -5 g. (7 ml.) of concentrated sulphuric acid, over the beaker. When the temperature of the solution falls to 0-2°, run in the acid mixture gradually while the temperature is maintained below 10°. After all the mixed acid has been added, remove the beaker from the freezing mixture, and allow it to stand at room temperature for 1 hour. Pour the reaction mixture on to 250 g. of crushed ice (or into 500 ml. of cold water), whereby the crude nitroacetanilide is at once precipitated. Allow to stand for 15 minutes, filter with suction on a Buchner funnel, wash it thoroughly with cold water until free from acids (test the wash water), and drain well. Recrystallise the pale yellow product from alcohol or methylated spirit (see Section IV,12 for experimental details), filter at the pump, wash with a httle cold alcohol, and dry in the air upon filter paper. [The yellow o-nitroacetanihde remains in the filtrate.] The yield of p-nitroacetanihde, a colourless crystalline sohd of m.p. 214°, is 20 g. [Pg.581]

Add, with stirring, a solution of 6 8 g. of the fiis-diazo ketone in 100 ml. of warm dioxan to a suspension of 7 0 g. of freshly precipitated silver oxide in 250 ml. of water containing 11 g. of sodium thiosulphate at 75°. A brisk evolution of nitrogen occurs after 1 5 hours at 75°, filter the liquid from the black silver residue. Acidify the almost colourless filtrate with nitric acid and extract the gelatinous precipitate with ether. Evaporate the dried ethereal extract the residue of crude decane-1 10-dicarboxylic acid weighs 4 -5 g. and melts at 116-117°. RecrystaUisation from 20 per cent, aqueous acetic acid raises the m.p. to 127-128°. [Pg.905]

Nitrogen and sulphur absent, (i) If only one halogen is present, acidify with dilute nitric acid and add excess of silver nitrate solution. A precipitate indicates the presence of a halogen. Decant the mother liquor and treat the precipitate with dilute aqueous ammonia solution If the precipitate is white and readily soluble in the ammonia solution, chlorine is present if it is pale yellow and difficultly soluble, bromine is present if it is yellow and insoluble, then iodine is indicated. Iodine and bromine should be confirmed by the tests given below. [Pg.1041]

Nitrogen and sulphur present. Just acidify 2-3 ml. of the fusion solution with dilute nitric acid, and evaporate to half the original volume in order to expel hydrogen cyanide and/or hydrogen sulphide which may be present. Dilute with an equal volume of water. If only one halogen is present, proceed as in tests (i) or (iii). If one or more halogens may be present, use tests (ii), (iii) or (iv). [Pg.1042]

Alternatively, add 1 or 2 drops of 5 per cent, nickel nitrate solution to 2-3 ml. of the fusion solution, filter off the nickel cyanide and/or nickel sulphide, acidify the filtrate with 2N nitric acid, and test for hahdes as above. [Pg.1043]

Phosphorus. The presence of phosphorus may be indicated by a smell of phosphine during the sodium fusion. Treat 1 ml. of the fusion solution with 3 ml. of eoneentrated nitric acid and boil for one minute. Cool and add an equal volume of ammonium molybdate reagent. Warm the mixture to 40-50°, and allow to stand. If phosphorus is present, a yellow erystalline precipitate of ammonium phosphomolybdate wUl separate. [Pg.1043]

Place 2 ml. of the periodic acid reagent in a small test tube, add one drop (no more—otherwise the silver iodate, if formed, will fail to precipitate) of concentrated nitric acid, and shake well. Add one drop or a small crystal of the compound to be tested, shake the mixture for 15-20 seconds, and then add 1-2 drops of 3 per cent, silver nitrate solution. The instantaneous formation of a white precipitate of silver iodate is a positive test. Failure to form a precipitate, or the appearance of a brown precipitate which redissolves on shaking, constitutes a negative test. [Pg.1070]

During my Cleveland years, I also continued and extended my studies in nitration, which I started in the early 1950s in Hungary. Conventional nitration of aromatic compounds uses mixed acid (mixture of nitric acid and sulfuric acid). The water formed in the reaetion dilutes the acid, and spent aeid disposal is beeoming a serious environ-... [Pg.104]

The state of aqueous solutions of nitric acid In strongly acidic solutions water is a weaker base than its behaviour in dilute solutions would predict, for it is almost unprotonated in concentrated nitric acid, and only partially protonated in concentrated sulphuric acid. The addition of water to nitric acid affects the equilibrium leading to the formation of the nitronium and nitrate ions ( 2.2.1). The intensity of the peak in the Raman spectrum associated with the nitronium ion decreases with the progressive addition of water, and the peak is absent from the spectrum of solutions containing more than about 5% of water a similar effect has been observed in the infra-red spectrum. ... [Pg.7]

In equimolar mixtures of nitric acid and water a monohydrate is formed whose Raman spectrum has been observed. There is no evidence for the existence of appreciable concentrations of the nitric acidium ion in aqueous nitric acid. [Pg.7]

Sulphuric acid catalysed nitration in concentrated nitric acid, but the effect was much weaker than that observed in nitration in organic solvents ( 3.2.3). The concentration of sulphuric acid required to double the rate of nitration of i-nitroanthraquinone was about 0-23 mol 1, whereas typically, a concentration of io mol 1 will effect the same change in nitration in mixtures of nitric acid and organic solvents. The acceleration in the rate was not linear in the concentration of catalyst, for the sensitivity to catalysis was small with low concentrations of sulphuric acid, but increased with the progressive addition of more catalyst and eventually approached a linear acceleration. [Pg.8]

The nitronium ions produced in this way tend to repress the selfdehydration of the nitric acid and therefore the net concentration of nitronium ions is not proportional to the concentration of the catalyst. When sufficient sulphuric acid has been added to make the self-ioniza-tion of nitric acid relatively unimportant, the nitronium ions will be produced predominantly from the above ionization, and the acceleration will follow a linear law. [Pg.9]

The operation of the nitronium ion in these media was later proved conclusively. "- The rates of nitration of 2-phenylethanesulphonate anion ([Aromatic] < c. 0-5 mol l i), toluene-(U-sulphonate anion, p-nitrophenol, A(-methyl-2,4-dinitroaniline and A(-methyl-iV,2,4-trinitro-aniline in aqueous solutions of nitric acid depend on the first power of the concentration of the aromatic. The dependence on acidity of the rate of 0-exchange between nitric acid and water was measured, " and formal first-order rate constants for oxygen exchange were defined by dividing the rates of exchange by the concentration of water. Comparison of these constants with the corresponding results for the reactions of the aromatic compounds yielded the scale of relative reactivities sho-wn in table 2.1. [Pg.10]

The two absorption bands, at 1050 and 1400 cm , which appear in the Raman spectra of solutions of nitric acid in concentrated sulphuric acid are not attributable to either of the acid molecules. In oleum the lower band appears at 1075-1095 cm. That these bands seemed to correspond to those in the spectra of anhydrous nitric acid and solid dinitrogen pentoxide caused some confusion in the assignment of the spectrum. The situation was resolved by examining the Raman spectra of solutions of nitric acid in perchloric or selenic acids , in which the strong absorption at 1400 cm is not accompanied by absorption at about 1050 cm . Thus, the band at 1400 cm arises from the nitronium ion, and the band at about 1050 cm can be attributed in the cases of nitric acid and solid dinitrogen pentoxide to the nitrate ion formed according to the following schemes ... [Pg.13]


See other pages where And nitric acid is mentioned: [Pg.275]    [Pg.279]    [Pg.360]    [Pg.230]    [Pg.239]    [Pg.112]    [Pg.173]    [Pg.324]    [Pg.324]    [Pg.324]    [Pg.422]    [Pg.112]    [Pg.200]    [Pg.290]    [Pg.526]    [Pg.527]    [Pg.678]    [Pg.756]    [Pg.1042]    [Pg.102]   
See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.4 , Pg.61 ]




SEARCH



Absorption of nitric acid by cellulose and nitrocellulose

Ammonia, nitric acid and nitrates

Digestion with nitric, perchloric and sulfuric acids

Esters of Nitric, Sulfuric, and Phosphoric Acid

From Diorgano Tellurium Compounds and Nitric Acid

Mixtures of nitric and sulfuric acids

Nitration in concentrated and aqueous nitric acid

Nitration with mixtures of nitric and phosphoric acids

Nitration with mixtures of nitric and sulphuric acids

Nitric Acid and Ammonium Nitrate

Nitric Acid and Nitration

Nitric Acid and Nitrogen Oxides

Nitric And Sulfuric Acids

Nitric acid ammonia and

Nitric acid and acetic anhydride

Nitric acid and its mixtures

Nitric acid and mixtures

Nitric acid and nitrate solutions

Nitric acid and nitrates

Nitric acid and sulphuric dioxide

Nitric acid, HNO3, and its derivatives

Nitric acid, Nitration, and Nitrate Esters

Nitrous Oxide, Nitrite, Nitrosonium, Trioxodinitrate Ions, and Nitric Acid

Reactions and Thermodynamics of Nitric Acid Production

Systems formed from nitric acid and acetic anhydride

Thermodynamic Properties of Nitric Acid and Its Hydrates

© 2024 chempedia.info