Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric acid and acetic anhydride

D Benzoyl nitrate and systems formed from nitric acid and acetic anhydride... [Pg.76]

SYSTEMS FORMED FROM NITRIC ACID AND ACETIC ANHYDRIDE... [Pg.79]

An investigation of the infra-red spectra of mixtures of nitric acid and acetic anhydride supports these conclusions. The concentration of nitronium ions, measured by the absorption band at 2380 cm, was... [Pg.79]

Evidence from the viscosities, densities, refractive indices and measurements of the vapour pressure of these mixtures also supports the above conclusions. Acetyl nitrate has been prepared from a mixture of acetic anhydride and dinitrogen pentoxide, and characterised, showing that the equilibria discussed do lead to the formation of that compound. The initial reaction between nitric acid and acetic anhydride is rapid at room temperature nitric acid (0-05 mol 1 ) is reported to be converted into acetyl nitrate with a half-life of about i minute. This observation is consistent with the results of some preparative experiments, in which it was found that nitric acid could be precipitated quantitatively with urea from solutions of it in acetic anhydride at —10 °C, whereas similar solutions prepared at room temperature and cooled rapidly to — 10 °C yielded only a part of their nitric acid ( 5.3.2). The following equilibrium has been investigated in detail ... [Pg.80]

In addition to the initial reaction between nitric acid and acetic anhydride, subsequent changes lead to the quantitative formation of tetranitromethane in an equimolar mixture of nitric acid and acetic anhydride this reaction was half completed in 1-2 days. An investigation of the kinetics of this reaction showed it to have an induction period of 2-3 h for the solutions examined ([acetyl nitrate] = 0-7 mol 1 ), after which the rate adopted a form approximately of the first order with a half-life of about a day, close to that observed in the preparative experiment mentioned. In confirmation of this, recent workers have found the half-life of a solution at 25 °C of 0-05 mol 1 of nitric acid to be about 2 days. ... [Pg.81]

An observation which is relevant to the nitration of very reactive compounds in these media ( 5.3.3) is that mixtures of nitric acid and acetic anhydride develop nitrous acid on standing. In a solution ([HNO3] = 0-7 mol 1 ) at 25 °C the concentration of nitrous acid is... [Pg.81]

Despite the considerable amount of work which has been reported, our knowledge of the nitration of biphenyl is not in a satisfactory state. The 0 p-T3.tw varies considerably with the conditions of nitration, and the cause of the variation is not fully understood. Nitrations with solutions prepared from nitric acid and acetic anhydride have generally given o -ratios greater than unity, the most consistent value being 2-2, obtained at o °C. The corresponding partial rate factors are reported later. [Pg.199]

The nitration of nitro- and dinitro-biphenyls has been examined by several workers. i - As would be expected, nitration of the nitro-biphenyls occurs in the phenyl ring. Like a phenyl group, a nitrophenyl group is 0 -directing, but like certain substituents of the type CH CHA ( 9.1.6) it is, except in the case of w-nitrophenyl, deactivating. Partial rate factors for the nitration at o °C of biphenyl and the nitro-biphenyls with solutions prepared from nitric acid and acetic anhydride are given below. The high o p-v2X o found for nitration of biphenyl... [Pg.202]

More information has appeared concerning the nature of the side reactions, such as acetoxylation, which occur when certain methylated aromatic hydrocarbons are treated with mixtures prepared from nitric acid and acetic anhydride. Blackstock, Fischer, Richards, Vaughan and Wright have provided excellent evidence in support of a suggested ( 5.3.5) addition-elimination route towards 3,4-dimethylphenyl acetate in the reaction of o-xylene. Two intermediates were isolated, both of which gave rise to 3,4-dimethylphenyl acetate in aqueous acidic media and when subjected to vapour phase chromatography. One was positively identified, by ultraviolet, infra-red, n.m.r., and mass spectrometric studies, as the compound (l). The other was less stable and less well identified, but could be (ll). [Pg.222]

The kinetics of the nitration of benzene, toluene and mesitylene in mixtures prepared from nitric acid and acetic anhydride have been studied by Hartshorn and Thompson. Under zeroth order conditions, the dependence of the rate of nitration of mesitylene on the stoichiometric concentrations of nitric acid, acetic acid and lithium nitrate were found to be as described in section 5.3.5. When the conditions were such that the rate depended upon the first power of the concentration of the aromatic substrate, the first order rate constant was found to vary with the stoichiometric concentration of nitric acid as shown on the graph below. An approximately third order dependence on this quantity was found with mesitylene and toluene, but with benzene, increasing the stoichiometric concentration of nitric acid caused a change to an approximately second order dependence. Relative reactivities, however, were found to be insensitive... [Pg.224]

Nitrates have only been prepared from saturated equatorial 3-hydroxyl groups by reaction with concentrated nitric acid and acetic anhydride at low temperature.Electrophilic substitution at C-6 precludes the satisfactory formation of nitrates from A -3j5-ols. [Pg.403]

Caution The nitrating mixture consisting of fuming nitric acid and acetic anhydride is an extremely active one, and combinations of it and organic materials are potentially explosive. The nitration should be carried out behind adequate safety shields. Acetone cyanohydrin nitrate is moderately explosive (Note 6) and all operations with it, but particularly its distillation, should be carried out behind safely shields. [Pg.83]

It is made by the nitration of hexamine (hexamethylenetetramine), itself prepared from formaldehyde and ammonia. Hexamine was originally nitrated with a large excess of concentrated nitric acid at temperatures below 30°C and the product recovered by adding the reaction liquor to an excess of chilled water. Later the yield was improved by adding ammonium nitrate to the reaction as this reacts with the liberated formaldehyde. A much-used process converts the hexamine first to its dinitrate, which is then reacted with ammonium nitrate, nitric acid and acetic anhydride (the last reagent being re-formed from the product by use... [Pg.32]

During its preparation from fuming nitric acid and acetic anhydride, strict temperature control and rate of addition of anhydride are essential to prevent a runaway violent reaction [1], An explosion occurred during preparation in a steel tank [2], It should not be distilled, as explosive decomposition may occur [1],... [Pg.214]

Smith and coworkers have screened the solid catalysts for aromatic nitration, and found that zeolite (3 gives the best result. Simple aromatic compounds such as benzene, alkylbenzenes, halogenobenzenes, and certain disubstituted benzenes are nitrated in excellent yields with high regioselectivity under mild conditions using zeolite (3 as a catalyst and a stoichiometric quantity of nitric acid and acetic anhydride.11 For example, nitration of toluene gives a quantitative yield of mononitrotoluenes, of which 79% is 4-nitrotoluene. Nitration of fluorobenzene under the same conditions gives p-fluoronitrobenzene exclusively (Eqs. 2.1 and 2.2)... [Pg.4]

Solutions of acetyl nitrate, prepared from fuming nitric acid and acetic anhydride, can react with alkenes to yield a mixture of nitro and nitrate ester products, but the /3-nitroacetate is usually the major product. ° Treatment of cyclohexene with this reagent is reported to yield a mixture of 2-nitrocyclohexanol nitrate, 2-nitrocyclohexanol acetate, 2-nitrocyclohexene and 3-nitrocyclohexene. °/3-Nitroacetates readily undergo elimination to the a-nitroalkenes on heating with potassium bicarbonate. /3-Nitroacetates are also reduced to the nitroalkane on treatment with sodium borohydride in DMSO. ... [Pg.4]

The reaction of alkynes with nitric acid or mixed acid is generally not synthetically useful. An exception is the reaction of acetylene with mixed acid or fuming nitric acid which leads to the formation of tetranitromethane. A modification to this reaction uses a mixture of anhydrous nitric acid and mercuric nitrate to form trinitromethane (nitroform) from acetylene. Nitroform is produced industrially via this method in a continuous process in 74 % yield. " The reaction of ethylene with 95-100 % nitric acid is also reported to yield nitroform (and 2-nitroethanol). The nitration of ketene with fuming nitric acid is reported to yield tetranitromethane. Tetranitromethane is conveniently synthesized in the laboratory by leaving a mixture of fuming nitric acid and acetic anhydride to stand at room temperature for several days. ... [Pg.4]

Chemists at the Naval Air Warfare Center (NAWC), Weapons Division, China Lake, have reported many examples of polynitroarylamine synthesis via Bamberger rearrangements of arylnitramines. " " The nitration of 4-amino-2,5-dinitrotoluene (36) with a mixture of nitric acid and acetic anhydride in glacial acetic acid at room temperature yields the nitramine (37) which on treatment with neat sulfuric acid, provides 4-amino-2,3,5-trinitrotoluene (38) as the sole product. " Nitration of 3,4-dinitroaniline (39) with a solution of nitric acid in acetic anhydride yields A,3,4-trinitroaniline (40) acid-catalyzed rearrangement of the latter in neat sulfuric acid furnishes a 74 % yield of isomeric 2,3,4- (41) and 2,4,5- (42) trinitroanilines in a 4 6 ratio.Accordingly, a mixture of products can be expected when an unsymmetrical arylnitramine has two unsubstituted ortho positions available. [Pg.146]

The energetic nitramide (60) has been prepared from the nitration of the tris-acetamide (59) with nitric acid and acetic anhydride or trifluoroacetic anhydride. Nitric acid-trifluoroacetic anhydride mixtures are powerful nitrating agents and well suited for amide and urea A-nitration. [Pg.209]


See other pages where Nitric acid and acetic anhydride is mentioned: [Pg.63]    [Pg.76]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.97]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.105]    [Pg.199]    [Pg.200]    [Pg.203]    [Pg.204]    [Pg.204]    [Pg.214]    [Pg.224]    [Pg.241]    [Pg.133]    [Pg.51]    [Pg.49]    [Pg.833]    [Pg.86]    [Pg.11]    [Pg.375]   


SEARCH



Acetic acid and acetates

Acids and anhydrides

Anhydrid, acetic nitric

Nitric acid anhydride

Nitric acid, and

Nitric anhydride

© 2024 chempedia.info