Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Niobium reactions

Heckley and coworkers reported the reaction of TaClj and Na(Et2C fc) to give complexes analogous to those obtained in the niobium reactions 16,17). The properties of Ta(Et2[Pg.90]

Tantalum metal powder is produced by the sodium reduction of potassium heptafluotantalate (K2Tap7) in a similar manner to the niobium reaction.23 The particular open reaction technique for niobium was in fact based upon that for tantalum in some details. [Pg.249]

R Musenich, P Fabbricatore, G Gemme, R Parodi, M Viviani, B Zhang, V Buscaglia, C Bottino. Growth of niobium nitrides by nitrogen-niobium reaction at high temperature. J Alloys Compos 209 319, 1994. [Pg.220]

Lithium Niobate. Lithium niobate [12031 -64-9], LiNbO, is normally formed by reaction of lithium hydroxide and niobium oxide. The salt has important uses in switches for optical fiber communication systems and is the material of choice in many electrooptic appHcations including waveguide modulators and sound acoustic wave devices. Crystals of lithium niobate ate usually grown by the Czochralski method foUowed by infiltration of wafers by metal vapor to adjust the index of refraction. [Pg.226]

Minor amounts of tantalum, tin, lead, bismuth, and other elements also occur ia the ferroniobium. After cooling for 12—30 h, the metal is separated from the slag and cmshed and si2ed for shipment. The recovery of niobium ia the alurninothermic reaction is 87—93%. Larger reactions generally give better recoveries. [Pg.22]

Concentrated sulfuric acid (97 wt %) at 300—400°C has been used to solubili2e niobium from columbite and pyrochlore (18,19). The exothermic reaction is performed in iron or siUcon-iron cmcibles to yield a stable sulfato complex. The complex is filtered free of residue and is hydroly2ed by dilution with water and boiling to yield niobic acid which is removed by filtration as a white coUoidal precipitate. [Pg.22]

The reaction of chlorine gas with a mixture of ore and carbon at 500—1000°C yields volatile chlorides of niobium and other metals. These can be separated by fractional condensation (21—23). This method, used on columbites, is less suited to the chlorination of pyrochlore because of the formation of nonvolatile alkaU and alkaline-earth chlorides which remain in the reaction 2one as a residue. The chlorination of ferroniobium, however, is used commercially. The product mixture of niobium pentachloride, iron chlorides, and chlorides of other impurities is passed through a heated column of sodium chloride pellets at 400°C to remove iron and aluminum by formation of a low melting eutectic compound which drains from the bottom of the column. The niobium pentachloride passes through the column and is selectively condensed the more volatile chlorides pass through the condenser in the off-gas. The niobium pentachloride then can be processed further. [Pg.22]

The reaction of finely ground ores and an excess of carbon at high temperatures produces a mixture of metal carbides. The reaction of pyrochlore and carbon starts at 950°C and proceeds vigorously. After being heated to 1800—2000°C, the cooled friable mixture is acid-leached leaving an insoluble residue of carbides of niobium, tantalum, and titanium. These may be dissolved in HF or may be chlorinated or burned to oxides for further processing. [Pg.22]

Once purification of the niobium has been effected, the niobium can be reduced to the metallic form. The double fluoride salt with potassium, K2NbFy, can be reduced using sodium metal. The reaction is carried out in a cylindrical iron vessel filled with alternating layers of K NbF and oxygen-free sodium ... [Pg.23]

Fused-salt electrolysis of K2NbFy is not an economically feasible process because of the low current efficiency (31). However, electrowinning has been used to obtain niobium from molten alkaU haUde electrolytes (32). The oxide is dissolved in molten alkaU haUde and is deposited in a molten metal cathode, either cadmium or zinc. The reaction is carried out in a ceramic or glass container using a carbon anode the niobium alloys with the cathode metal, from which it is freed by vacuum distillation, and the niobium powder is left behind. [Pg.23]

Niobium pentoxide also is reduced to metal commercially by the aluminothermic process. The finely ground powder is mixed with atomized aluminum and an accelerator compound which gives extra heat during reaction, then is ignited. The reaction is completed quickly and, after cooling, the slag is broken loose to free the metal derby which is purified by electron-beam melting. [Pg.23]

Unstable niobium isotopes that are produced in nuclear reactors or similar fission reactions have typical radiation hazards (see Radioisotopes). The metastable Nb, = 14 yr, decays by 0.03 MeV gamma emission to stable Nb Nb, = 35 d, a fission product of decays to stable Mo by... [Pg.25]

Niobium Pent chloride. Niobium pentachloride can be prepared in a variety of ways but most easily by direct chlorination of niobium metal. The reaction takes place at 300—350°C. Chlorination of a niobium pentoxide—carbon mixture also yields the pentachloride however, generally the latter is contaminated with niobium oxide trichloride. The pentachloride is a lemon-yeUow crystalline soHd that melts to a red-orange Hquid and hydrolyzes readily to hydrochloric acid and niobic acid. It is soluble in concentrated hydrochloric and sulfuric acids, sulfur monochloride, and many organic solvents. [Pg.27]

Niobium Pentabromide. Niobium pentabromide is most conveniently prepared by reaction of bromine with niobium metal at ca 500°C. It is a fairly volatile yellow-red compound that is hygroscopic and readily hydrolyzes. It is soluble in water, alcohol, and ethyl bromide. [Pg.27]

Niobium Oxide Tribromide. Niobium oxide tribromide, NbOBr, is a yeUowbrown soHd which is readily hydrolyzed by moist air. It is prepared by reaction of bromine with a mixture of niobium pentoxide and carbon at 550°C. It decomposes in vacuum to the pentabromide and pentoxide at 320°C. [Pg.27]

Niobium Pentaiodide. Brass-yeUow crystals of niobium pentaiodide are formed by direct reaction of excess iodine with niobium metal in a... [Pg.27]

Lithium niobate [12031 -63-9] Nb20 or LiNbO, is prepared by the soHd-state reaction of lithium carbonate with niobium pentoxide. After... [Pg.28]

Sihca is reduced to siUcon at 1300—1400°C by hydrogen, carbon, and a variety of metallic elements. Gaseous siUcon monoxide is also formed. At pressures of >40 MPa (400 atm), in the presence of aluminum and aluminum haUdes, siUca can be converted to silane in high yields by reaction with hydrogen (15). SiUcon itself is not hydrogenated under these conditions. The formation of siUcon by reduction of siUca with carbon is important in the technical preparation of the element and its alloys and in the preparation of siUcon carbide in the electric furnace. Reduction with lithium and sodium occurs at 200—250°C, with the formation of metal oxide and siUcate. At 800—900°C, siUca is reduced by calcium, magnesium, and aluminum. Other metals reported to reduce siUca to the element include manganese, iron, niobium, uranium, lanthanum, cerium, and neodymium (16). [Pg.471]

The important (3-stabilizing alloying elements are the bcc elements vanadium, molybdenum, tantalum, and niobium of the P-isomorphous type and manganese, iron, chromium, cobalt, nickel, copper, and siUcon of the P-eutectoid type. The P eutectoid elements, arranged in order of increasing tendency to form compounds, are shown in Table 7. The elements copper, siUcon, nickel, and cobalt are termed active eutectoid formers because of a rapid decomposition of P to a and a compound. The other elements in Table 7 are sluggish in their eutectoid reactions and thus it is possible to avoid compound formation by careful control of heat treatment and composition. The relative P-stabilizing effects of these elements can be expressed in the form of a molybdenum equivalency. Mo (29) ... [Pg.101]

The separation of niobium from tantalum tluough the gaseous chlorides is carried out at higher temperature, about 900 K, and it is therefore to be expected, as is the case, that the thermodynamic data will provide a useful guide. These metals form a number of chlorides, mainly the ui- tetra- and pentachlorides. These latter are much more volatile than the tetrahalides, and the exchange reaction at 900 K... [Pg.93]

Odier metals having vety stable oxides can be reduced by the aluminothermic reaction to produce useful feno-alloys. Niobium oxide, NbO, can be reduced to form a feiTO-alloy by the inclusion of iron in die reacting iiiixmre as haematite or magnetite, depending on the niobium content which is requhed in the product. [Pg.344]

Good results are obtained with oxide-coated valve metals as anode materials. These electrically conducting ceramic coatings of p-conducting spinel-ferrite (e.g., cobalt, nickel and lithium ferrites) have very low consumption rates. Lithium ferrite has proved particularly effective because it possesses excellent adhesion on titanium and niobium [26]. In addition, doping the perovskite structure with monovalent lithium ions provides good electrical conductivity for anodic reactions. Anodes produced in this way are distributed under the trade name Lida [27]. The consumption rate in seawater is given as 10 g A ar and in fresh water is... [Pg.216]

Very high pressure and temperature experiments with the Sawaoka fixture on Nb-Si powder mixtures show that the silicon melted but the higher melt temperature niobium did not. Under these conditions, only chemical reaction... [Pg.191]


See other pages where Niobium reactions is mentioned: [Pg.151]    [Pg.151]    [Pg.15]    [Pg.125]    [Pg.298]    [Pg.360]    [Pg.136]    [Pg.15]    [Pg.22]    [Pg.22]    [Pg.25]    [Pg.27]    [Pg.27]    [Pg.28]    [Pg.98]    [Pg.451]    [Pg.127]    [Pg.216]    [Pg.30]    [Pg.128]    [Pg.57]    [Pg.854]    [Pg.171]   
See also in sourсe #XX -- [ Pg.460 ]




SEARCH



© 2024 chempedia.info