Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron detection limits

Atomic absorption spectroscopy of VPD solutions (VPD-AAS) and instrumental neutron activation analysis (INAA) offer similar detection limits for metallic impurities with silicon substrates. The main advantage of TXRF, compared to VPD-AAS, is its multielement capability AAS is a sequential technique that requires a specific lamp to detect each element. Furthermore, the problem of blank values is of little importance with TXRF because no handling of the analytical solution is involved. On the other hand, adequately sensitive detection of sodium is possible only by using VPD-AAS. INAA is basically a bulk analysis technique, while TXRF is sensitive only to the surface. In addition, TXRF is fast, with an typical analysis time of 1000 s turn-around times for INAA are on the order of weeks. Gallium arsenide surfaces can be analyzed neither by AAS nor by INAA. [Pg.355]

It is important to note that the neutron capture probability, called the cross section a, is vasdy different for various elements. Excellent sensitivity for Au is due largely to its high cross section (a = 100 barns 1 barn = 1 x 10 cm ). Other elements, such as Pb, have low cross sections and much poorer detection limits. [Pg.673]

The NAA measurements on the paper samples were made at the Breazeale Nuclear Reactor Facility at the Pennsylvania State University with a TRIGA Mark III reactor at a flux of about 1013 n/cm2-sec. Samples were irradiated from 2 to 20 min and counted for 2000 sec, after a 90 min decay time for Ba and a 60 hr decay for Sb, Analyses were performed instrumentally, without radiochemical separation, using a 35cm3 coaxial Ge-Li detector and a 4096-channel pulse height analyzer. With these procedures, detection limits for Ba and Sb were 0.02ug and 0.001 ug, respectively. These sensitivities are comparable to those obtained by GA s radiochemical separation procedure, and are made possible by the use of the higher neutron output from the more powerful reactor and in combination with the higher resolution solid state detector... [Pg.376]

To date, a few methods have been proposed for direct determination of trace iodide in seawater. The first involved the use of neutron activation analysis (NAA) [86], where iodide in seawater was concentrated by strongly basic anion-exchange column, eluted by sodium nitrate, and precipitated as palladium iodide. The second involved the use of automated electrochemical procedures [90] iodide was electrochemically oxidised to iodine and was concentrated on a carbon wool electrode. After removal of interference ions, the iodine was eluted with ascorbic acid and was determined by a polished Ag3SI electrode. The third method involved the use of cathodic stripping square wave voltammetry [92] (See Sect. 2.16.3). Iodine reacts with mercury in a one-electron process, and the sensitivity is increased remarkably by the addition of Triton X. The three methods have detection limits of 0.7 (250 ml seawater), 0.1 (50 ml), and 0.02 pg/l (10 ml), respectively, and could be applied to almost all the samples. However, NAA is not generally employed. The second electrochemical method uses an automated system but is a special apparatus just for determination of iodide. The first and third methods are time-consuming. [Pg.81]

Holzbecker and Ryan [825] determined these elements in seawater by neutron activation analysis after coprecipitation with lead phosphate. Lead phosphate gives no intense activities on irradiation, so it is a suitable matrix for trace metal determinations by neutron activation analysis. Precipitation of lead phosphate also brings down quantitatively the insoluble phosphates of silver (I), cadmium (II), chromium (III), copper (II), manganese (II), thorium (IV), uranium (VI), and zirconium (IV). Detection limits for each of these are given, and thorium and uranium determinations are described in detail. Gamma activity from 204Pb makes a useful internal standard to correct for geometry differences between samples, which for the lowest detection limits are counted close to the detector. [Pg.282]

May et al. [73] used neutron activation analysis to determine 237neptunium in waste waters. The determination used the 237Np(rc,y)238Np reaction. The detection limit was 5 x 10 6 xg of 237neptunium, which corresponds to 2.5 x 10 6 xg/kg for 200 ml seawater samples. [Pg.354]

In contrast to many chemotherapeutic agents in cancer therapy, boron compounds for BNCT do not require a tumoricidal action in their own right. For their successful application in the therapy of patients, it is important to deliver, to the tumor, a radiation dose which is higher than the radiation dose to the surrounding tissue. The demonstration that this is actually achieved lies ultimately in the treatment of the tumor in question. Because of the short range of the particles produced in the 10B(n,a)7Li reaction, it is very important where, on a cellular and subcellular dimension, the neutron capture reaction takes place. Different methods for boron detection and quantification give different resolution of the boron distribution. It is instructive to compare these methods, both for their precision and lower detection limits, as well as for their ability to yield an image of the boron distribution in tissue (Table 2.2-1). [Pg.120]

Trace amounts of Tc are also determined in filter paper and vegetable samples by neutron activation analysis The procedure consists of the following major steps separation of technetium from the sample, thermal neutron irradiation of the Tc fraction to produce °°Tc, post-irradiation separation and purification of °°Tc from other activated nuclides, and counting of the 16 s Tc in a low-background P counter. The estimated detection limits for Tc in this procedure are 5 x 10 g in filter paper and 9 x 10 g in vegetable samples. [Pg.134]

Dead time considerations in the alpha particle detection limit the count rate, and hence limit the neutron flux that can be used with this approach. This means that large scan times will probably be required with most implementations of this approach. [Pg.76]

Manganese in aqueous solution may be analyzed by several instrumental techniques including flame and furnace AA, ICP, ICP-MS, x-ray fluorescence and neutron activation. For atomic absorption and emission spectrometric determination the measurement may be done at the wavelengths 279.5, 257.61 or 294.92 nm respectively. The metal or its insoluble compounds must be digested with nitric acid alone or in combination with another acid. Soluble salts may be dissolved in water and the aqueous solution analyzed. X-ray methods may be applied for non-destructive determination of the metal. The detection limits in these methods are higher than those obtained by the AA or ICP methods. ICP-MS is the most sensitive technique. Several colorimetric methods also are known, but such measurements require that the manganese salts be aqueous. These methods are susceptible to interference. [Pg.543]

With analytical methods such as x-ray fluorescence (XRF), proton-induced x-ray emission (PIXE), and instrumental neutron activation analysis (INAA), many metals can be simultaneously analyzed without destroying the sample matrix. Of these, XRF and PEXE have good sensitivity and are frequently used to analyze nickel in environmental samples containing low levels of nickel such as rain, snow, and air (Hansson et al. 1988 Landsberger et al. 1983 Schroeder et al. 1987 Wiersema et al. 1984). The Texas Air Control Board, which uses XRF in its network of air monitors, reported a mean minimum detectable value of 6 ng nickel/m (Wiersema et al. 1984). A detection limit of 30 ng/L was obtained using PIXE with a nonselective preconcentration step (Hansson et al. 1988). In these techniques, the sample (e.g., air particulates collected on a filter) is irradiated with a source of x-ray photons or protons. The excited atoms emit their own characteristic energy spectrum, which is detected with an x-ray detector and multichannel analyzer. INAA and neutron activation analysis (NAA) with prior nickel separation and concentration have poor sensitivity and are rarely used (Schroeder et al. 1987 Stoeppler 1984). [Pg.210]

Unstable radionuclei result on subjecting the nuclei of some elements to neutron bombardment. During the decay process, in which the radionuclei return to more stable forms, characteristic radiation is emitted. The energy of the radiation is characteristic of the element, and its intensity forms the basis for quantitative elemental analysis. The advantages of NAA for trace analysis include low detection limits, good sensitivity, multi-element capability and relative freedom from matrix effects. However, for successful application of this technique skilled personel are required and because of the low sample throughput the amount of work involved in the analysis of column fractions, for example, is prohibitively high. In addition, it may take up to several weeks before the results are available. Further, only few laboratories have easy access to a neutron source. [Pg.166]

Figure 1 Observed photon luminosity vs. time during a year after the supernova explosion predicted from standard cooling theory of neutron stars. Shown are three representative nuclear models PS (dashed), FP (solid), and BPS (dot-dashed). The detection limit from Ginga is shown as a horizontal line. Figure 1 Observed photon luminosity vs. time during a year after the supernova explosion predicted from standard cooling theory of neutron stars. Shown are three representative nuclear models PS (dashed), FP (solid), and BPS (dot-dashed). The detection limit from Ginga is shown as a horizontal line.
Industrial utilization of neptunium has been very limited. The isotope 1 Np has been used as a component in neutron detection instruments. Neptunium is present in significant quantities in spent nuclear reactor fuel and poses a threat to the environment. A group of scientists at the U.S. Geological Survey (Denver, Colorado) has studied the chemical speciation of neptunium (and americium) in ground waters associated with rock types that have been proposed as possible hosts for nuclear waste repositories. See Cleveland reference. [Pg.1065]

Neutron activation analysis involves the exposure of the sample to high neutron flux densities in a nuclear reactor, but is a very sensitive method for certain metals, as illustrated by the following data on detection limits (ng) Fe, 3200 Zn, 420 Co, 12 Ni, 7 Na, <0.1 Cu, 0.035 Mn, 0.001. [Pg.550]

In addition, some metals may be determined by other methods, including ion-selective electrode, ion chromatography, electrophoresis, neutron activation analysis, redox titration, and gravimetry. Atomic absorption or emission spectrophotometry is the method of choice, because it is rapid, convenient, and gives the low detection levels as required in the environmental analysis. Although colorimetry methods can give accurate results, they are time consuming and a detection limit below 10 pg/L is difficult to achieve for most metals. [Pg.84]

Neutron activation analysis (NAA) technique has also been used for determining low levels of barium in human blood (Olehy et al. 1966). This technique is based on the interaction of the nuclei of individual barium atoms with neutron irradiation, resulting in the emission of x-rays (photons). Detection limits of 7 pg barium/L of erythrocyte and 66 pg barium/L of plasma were obtained (Olehy et al. 1966). The advantages of the NAA technique are its nondestructive nature of sample and minimum sample manipulation. Disadvantages of this technique include its high costs and a nuclear reactor may not be readily available to many laboratories. [Pg.89]


See other pages where Neutron detection limits is mentioned: [Pg.244]    [Pg.647]    [Pg.671]    [Pg.673]    [Pg.674]    [Pg.236]    [Pg.63]    [Pg.664]    [Pg.666]    [Pg.24]    [Pg.5]    [Pg.403]    [Pg.537]    [Pg.66]    [Pg.120]    [Pg.27]    [Pg.132]    [Pg.537]    [Pg.18]    [Pg.263]    [Pg.319]    [Pg.344]    [Pg.352]    [Pg.411]    [Pg.117]    [Pg.44]    [Pg.448]    [Pg.277]    [Pg.128]    [Pg.236]    [Pg.270]    [Pg.219]    [Pg.252]   
See also in sourсe #XX -- [ Pg.250 ]




SEARCH



Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

Instrumental neutron activation detection limits

Neutron detection

© 2024 chempedia.info