Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural rubber sulfur vulcanization

A thin layer of a mix of natural rubber, sulfur, precipitated silica, water, and some additives, such as carbon black and vulcanizing agents, is extruded on a paper support belt, calendered, and vulcanized as a roll in an autoclave under elevated pressure and temperature ( 180 °C). A modi-... [Pg.274]

In practice, the most important chemical modification of natural rubber is vulcanization. Vulcanization is applied for the modification of mechanical properties of natural rubber, mainly regarding the temperature range of elasticity, which is considerably extended. The process consists of a chemical reaction with sulfur (1-3%), which takes place at 130-145° C. Besides sulfur, a reaction at room temperature with S2CI2 is sometimes used for vulcanization. The reaction takes place as follows ... [Pg.210]

Natural rubber is vulcanized commercially in three ways (all using heat to promote the reaction) 1) mixed with sulfur or sulfur donors, 2) mixed with peroxides, or 3) mixed with urethane type crosslinkers. [Pg.1042]

ENR PMMA Epoxidized natural rubber (ENR) vulcanized with sulfur employed PMMA as the rigid thermoplastic phase. 85... [Pg.117]

Sulfur is a component of black gunpowder, and is used in the vulcanization of natural rubber and a fungicide. It is also used extensively in making phosphatic fertilizers. A tremendous tonnage is used to produce sulfuric acid, the most important manufactured chemical. [Pg.39]

Originally, vulcanization implied heating natural rubber with sulfur, but the term is now also employed for curing polymers. When sulfur is employed, sulfide and disulfide cross-links form between polymer chains. This provides sufficient rigidity to prevent plastic flow. Plastic flow is a process in which coiled polymers slip past each other under an external deforming force when the force is released, the polymer chains do not completely return to their original positions. [Pg.1011]

Natural rubber, cis-1,4-polyisoprene, cross-linked with sulfur. This reaction was discovered by Goodyear in 1839, making it both historically and commercially the most important process of this type. This reaction in particular and crosslinking in general are also called vulcanization. [Pg.137]

Geon and Seo [47] also determined the effect of vulcanization time on the adhesion of natural rubber to brass-plated steel. For relatively short times, there was a peak at the end of the copper profile that corresponded well with a peak in the sulfur profile. Similarly, peaks in the zinc and oxygen profiles corresponded well. These results showed that copper sulfide and zinc oxide mostly formed at short times but some evidence for formation of zinc sulfide was also obtained. For long times, the peak in the sulfur profile no longer corresponded with that in the copper profile. Instead, the peak in the sulfur profile corresponded to the peak in the zinc profile. It was concluded that the formation of zinc sulfide increased substantially at long times. An increase in vulcanization time correlated well with a decrease in the force required to pull brass-plated steel wires out of rubber blocks. [Pg.295]

Sulfur chemistry [29] has also been used to crosslink rubber/resin PSAs, although the use of elemental sulfur itself yields tapes that can stain substrates. Other patents exemplify the use of typical rubber vulcanizing chemistry such as Tetrone A , dipentamethylenethiuramtetrasulfide, and Tuads , tetramethylthiu-ram disulfide [30], or zinc butyl xanthate [31] for this purpose. Early art [32] also claimed electron beam curing of both natural rubber and other adhesives that were solvent coated on tape backings. Later references to electron beam curing... [Pg.475]

Rubber used in practical applications is crosslinked through disulfide (-S-S-) bonds, and is known as vulcanized rubber. Can you name another important class of polymers which are crosslinked through disulfide bonds Examine vulcanized rubber. How many individual strands does it comprise Are these strands of natural rubber or of gutta-percha What is the percentage (by weight) of sulfur incorporated into the polymer (The molecular weight of the sample is 1701 amu.) Does this classify as a low-sulfur polymer (<3%), a high-sulfur polymer (>10%) or in between ... [Pg.250]

The elasticity of a polymer is its ability to return to its original shape after being stretched. Natural rubber has low elasticity and is easily softened by hearing. Flowever, the vulcanization of rubber increases its elasticity. In vulcanization, rubber is heated with sulfur. The sulfur atoms form cross-links between the poly-isoprene chains and produce a three-dimensional network of atoms (Fig. 19.17). Because the chains are covalently linked together, vulcanized rubber does not soften as much as natural rubber when the temperature is raised. Vulcanized rubber is also much more resistant to deformation when stretched, because the cross-... [Pg.888]

FIGURE 19.17 The gray cylinders in the small inset represent polyisoprene molecules, and the beaded yellow strings represent disulfide (—S—S—) links that are introduced when the rubber is vulcanized, or heated with sulfur. These cross-links increase the resilience of the rubber and make it more useful than natural rubber. Automobile tires are made of vulcanized rubber and a number of additives, including carbon. [Pg.889]

When two polymers interact or react with each other, they are likely to provide a compatible, even a miscible, blend. Epoxidized natural rubber (ENR) interacts with chloro-sulfonated polyethylene (Hypalon) and polyvinyl chloride (PVC) forming partially miscible and miscible blends, respectively, due to the reaction between chlorosulfonic acid group and chlorine with epoxy group of ENR. Chiu et al. have studied the blends of chlorinated polyethylene (CR) with ENR at blend ratios of 75 25, 50 50, and 25 75, as well as pure rubbers using sulfur (Sg), 2-mercapto-benzothiazole, and 2-benzothiazole disulfide as vulcanizing agents [32]. They have studied Mooney viscosity, scorch... [Pg.316]

FIGURE 14.3 Development of accelerated sulfur vulcanization of natural rubber (NR). (From A.Y. Coran, Chem. Tech., 23, 106, 1983.)... [Pg.419]

C.S.L. Baker, Non-Sulfur Vulcanization, in Natural Rubber Science and Technology, A. Rober, Eds., Oxford Science, London, 1988. [Pg.461]

The specimen was prepared by the following method. After mixing HAF carbon black (50 phr) with natural rubber (NR) in a laboratory mixer, carbon gel was extracted from unvulcanized mixture as an insoluble material for toluene for 48 h at room temperamre and dried in a vacuum oven for 24 h at 70°C. We made the specimen as a thin sheet of the carbon gel (including carbon black) by pressing the extracted carbon gel at 90°C. The cured specimen was given by adding sulfur (1.5 phr) to the unvulcanized mixture and vulcanized for 30 min at 145°C. The dynamic viscoelastic measurement was performed with Rheometer under the condition of 0.1% strain and 15 Hz over temperatures. [Pg.527]

In 1839, Charles Goodyear discovered that sulfur could cross-link polymer chains and patented the process in 1844 [1]. Since then rubber became a widely usable material. By the year 1853, natural rubber (NR) was in short supply. So attempts were made to undo what Goodyear had accomplished. Goodyear himself was involved in trying to reclaim vulcanized rubber to overcome the shortage of NR. Later, as a consequence of World War I, Germany introduced synthetic rubbers, namely the Buna rubbers, which raised the curiosity of polymer chemists all over the world. Subsequently, synthetic rubbers with tailor-made properties were born. This was followed by the discovery of new methods and chemicals for vulcanization and processing. It is obvious... [Pg.1043]

Natural rubber latex, obtained from rubber trees, is converted to its final form by a process known as vulcanization, first discovered by Charles Goodyear in 1839. Vulcaiuzation is basically a crosslinking reaction of double bonds in the latex structure with sulfur. The polymerization of butadiene with itself or with other vinyl monomers results in a material that like natural latex, still contains double bonds. Thus, synthetic rubber made from butadiene can be processed and vulcanized just like natural rubber. [Pg.135]

An example of a nonlinear polymer derived by cross-linking an initially linear polymer is afforded by vulcanized natural rubber. In the usual vulcanization procedure involving the use of sulfur and accelerators, various types of cross-linkages may be introduced between occasional units (about one in a hundred) of the polyisoprene chains. Some of these bonds are indicated to be of the following type ... [Pg.33]

Fig. 85.—Force-temperature curves at constant length obtained by Anthony, Gaston, and Guth for natural rubber vulcanized with sulfur for elongations from 3 percent to 38 percent (at 20°C), as indicated. Fig. 85.—Force-temperature curves at constant length obtained by Anthony, Gaston, and Guth for natural rubber vulcanized with sulfur for elongations from 3 percent to 38 percent (at 20°C), as indicated.
These conclusions have been confirmed by Wood and Roth, who carried out measurements at both constant lengths and at constant elongations using natural rubber vulcanized with sulfur and an accelerator. Their results at constant elongation, to be considered later in connection with the thermodynamics of rubber elasticity at higher elongations, are summarized in Fig. 89. [Pg.449]

Various other chemical agents which by their nature are capable of producing cross-linkages between polymer chains effect the same changes in physical properties that are observed in sulfur vulcanization. One of the best known of these agents is sulfur monochloride, which readily combines with two molecules of an olefin (the mustard gas reaction). Applied to rubber, it induces vulcanization even at moderate temperatures, the probable structure of the cross-linkage being... [Pg.457]


See other pages where Natural rubber sulfur vulcanization is mentioned: [Pg.293]    [Pg.13]    [Pg.57]    [Pg.12]    [Pg.362]    [Pg.293]    [Pg.347]    [Pg.183]    [Pg.29]    [Pg.123]    [Pg.57]    [Pg.50]    [Pg.408]    [Pg.12]    [Pg.451]    [Pg.455]    [Pg.408]    [Pg.351]    [Pg.150]    [Pg.110]    [Pg.112]    [Pg.762]    [Pg.451]    [Pg.486]    [Pg.106]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Natural rubber accelerated sulfur vulcanization

Natural rubber vulcanization

Rubber vulcanization

Rubber, vulcanized

Sulfur natural

Sulfur rubber

Sulfur vulcanized natural rubber

Sulfur vulcanized rubber

Vulcan

Vulcanization

Vulcanize

Vulcanized

Vulcanizing

© 2024 chempedia.info