Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nanofiltration rejection

Species Nanofiltration Rejection (%) Reverse Osmosis Rejection (%)... [Pg.343]

The individual membrane filtration processes are defined chiefly by pore size although there is some overlap. The smallest membrane pore size is used in reverse osmosis (0.0005—0.002 microns), followed by nanofiltration (0.001—0.01 microns), ultrafHtration (0.002—0.1 microns), and microfiltration (0.1—1.0 microns). Electro dialysis uses electric current to transport ionic species across a membrane. Micro- and ultrafHtration rely on pore size for material separation, reverse osmosis on pore size and diffusion, and electro dialysis on diffusion. Separation efficiency does not reach 100% for any of these membrane processes. For example, when used to desalinate—soften water for industrial processes, the concentrated salt stream (reject) from reverse osmosis can be 20% of the total flow. These concentrated, yet stiH dilute streams, may require additional treatment or special disposal methods. [Pg.163]

Whey concentration, both of whole whey and ultrafiltration permeate, is practiced successfully, but the solubility of lactose hmits the practical concentration of whey to about 20 percent total sohds, about a 4x concentration fac tor. (Membranes do not tolerate sohds forming on their surface.) Nanofiltration is used to soften water and clean up streams where complete removal of monovalent ions is either unnecessary or undesirable. Because of the ionic character of most NF membranes, they reject polyvalent ions much more readily than monovalent ions. NF is used to treat salt whey, the whey expressed after NaCl is added to curd. Nanofiltration permits the NaCl to permeate while retaining the other whey components, which may then be blended with ordinaiy whey. NF is also used to deacidify whey produced by the addition of HCl to milk in the production of casein. [Pg.2034]

Membrane Characterization Membranes are always rated for flux and rejection. NaCl is always used as one measure of rejection, and for a veiy good RO membrane, it will be 99.7 percent or more. Nanofiltration membranes are also tested on a larger solute, commonly MgS04. Test results are veiy much a function of how the test is run, and membrane suppliers are usually specific on the test conditions. Salt concentration will be specified as some average of feed and exit concentration, but both are bulk values. Salt concentration at the membrane governs performance. Flux, pressure, membrane geome-tiy, and cross-flow velocity all influence polarization and the other variables shown in Fig. 22-63. [Pg.2035]

Nanofiltration membranes are negatively charged and reject multivalent anions at a much higher level than monovalent anions, an effect described as Donnan exclusion. Nanofiltration membranes have MgS04 retention and water permeability claims. [Pg.47]

Nanofiltration membranes, 15 825 acid resistant, 21 635t in nonaqueous media, 21 654—656 organic rejections by, 21 656-657 Nanofiltration reverse osmosis systems, 26 80-83... [Pg.609]

It was expected that sulphate removal from sodium bromide solutions would be very similar to sulphate removal from sodium chloride. Experimentation was carried out to determine sulphate rejection, membrane permeability and membrane stability in concentrated sodium bromide. The experimental work determined that nanofiltration is a useful process for separating these materials. [Pg.164]

Radjenovic J, Petrovic M, Ventura F, Barcelo D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42 3601-3610... [Pg.66]

Xu P, Drewes JE, Bellona C, Amy G, Kim T-U, Adam M, Heberer T (2005) Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. [Pg.66]

Kiso Y., Y. Sigiura, T. Kitao, and K. Nishimura (2001). Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. Journal of Membrane Science 192 1-10. [Pg.270]

Fig. 1. Water flux and NaCl rejection of several membrane types (10), where (D) represents seawater membranes, which operate at 5.5 MPa and 25°C ( ), brackish water membranes, which operate at 1500 mg/L NaCl feed, 1.5 MPa, and 25°C and (SSI) nanofiltration membranes, which operate at 500 mg/L NaCl feed, 0.74 MPa, and 25°C. A represents cellulose acetate—cellulose triacetate B, linear aromatic polyamide C, cross-linked polyether D, cross-linked fully aromatic polyamide E, other thin-film composite membranes F, asymmetric membranes G, BW-30 (FilmTec) H, SU-700 (Toray) I, A-15 (Du Pont) J, NTR-739HF (Nitto-Denko) K, NTR-729HF (Nitto-Denko) L, NTR-7250 (Nitto-Denko) M, NF40 (FilmTec) N, NF40HF (FilmTec) O, UTC-40HF (Toray) P, NF70 (FilmTec) Q, UTC-60 (Toray) R, UTC-20HF (Toray) and S, NF50 (FilmTec). To convert MPa to psi,... Fig. 1. Water flux and NaCl rejection of several membrane types (10), where (D) represents seawater membranes, which operate at 5.5 MPa and 25°C ( ), brackish water membranes, which operate at 1500 mg/L NaCl feed, 1.5 MPa, and 25°C and (SSI) nanofiltration membranes, which operate at 500 mg/L NaCl feed, 0.74 MPa, and 25°C. A represents cellulose acetate—cellulose triacetate B, linear aromatic polyamide C, cross-linked polyether D, cross-linked fully aromatic polyamide E, other thin-film composite membranes F, asymmetric membranes G, BW-30 (FilmTec) H, SU-700 (Toray) I, A-15 (Du Pont) J, NTR-739HF (Nitto-Denko) K, NTR-729HF (Nitto-Denko) L, NTR-7250 (Nitto-Denko) M, NF40 (FilmTec) N, NF40HF (FilmTec) O, UTC-40HF (Toray) P, NF70 (FilmTec) Q, UTC-60 (Toray) R, UTC-20HF (Toray) and S, NF50 (FilmTec). To convert MPa to psi,...
Nanofiltration membranes usually have good rejections of organic compounds having molecular weights above 200—500 (114,115). NF provides the possibility of selective separation of certain organics from concentrated monovalent salt solutions such as NaCl. The most important nanofiltration membranes are composite membranes made by interfacial polymerization. Polyamides made from piperazine and aromatic acyl chlorides are examples of widely used nanofiltration membrane. Nanofiltration has been used in several commercial applications, among which are demineralization, oiganic removal, heavy-metal removal, and color removal (116). [Pg.155]

Oh, J.-I., Fee, S.-H. and Yamamoto, K. (2004) Relationship between molar volume and rejection of arsenic species in groundwater by low-pressure nanofiltration process. Journal of Membrane Science, 234(1-2), 167-75. [Pg.425]

Membranes in the third group contain pores with diameters between 5 A and 10 A and are intermediate between truly microporous and truly solution-diffusion membranes. For example, nanofiltration membranes are intermediate between ultrafiltration membranes and reverse osmosis membranes. These membranes have high rejections for the di- and trisaccharides sucrose and raffi-nose with molecular diameters of 10-13 A, but freely pass the monosaccharide fructose with a molecular diameter of about 5-6 A. [Pg.17]

Table 2.6 Rejection of microsolutes by nanofiltration membranes (FilmTec data) [73], Reprinted from Desalination, 70,... Table 2.6 Rejection of microsolutes by nanofiltration membranes (FilmTec data) [73], Reprinted from Desalination, 70,...
Dynamically formed membranes were pursued for many years for reverse osmosis because of their high water fluxes and relatively good salt rejection, especially with brackish water feeds. However, the membranes proved to be unstable and difficult to reproduce reliably and consistently. For these reasons, and because high-performance interfacial composite membranes were developed in the meantime, dynamically formed reverse osmosis membranes fell out of favor. A small application niche in high-temperature nanofiltration and ultrafiltration remains, and Rhone Poulenc continues their production. The principal application is poly(vinyl alcohol) recovery from hot wash water produced in textile dyeing operations. [Pg.125]

The comparative performance of high-pressure, high-rejection reverse osmosis membranes, medium-pressure brackish water desalting membranes, and low-pressure nanofiltration membranes is shown in Table 5.2. Generally, the performance of a membrane with a particular salt can be estimated reliably once the... [Pg.207]

The goal of most of the early work on reverse osmosis was to produce desalination membranes with sodium chloride rejections greater than 98 %. More recently membranes with lower sodium chloride rejections but much higher water permeabilities have been produced. These membranes, which fall into a transition region between pure reverse osmosis membranes and pure ultrafiltration membranes, are called loose reverse osmosis, low-pressure reverse osmosis, or more commonly, nanofiltration membranes. Typically, nanofiltration membranes have sodium chloride rejections between 20 and 80 % and molecular weight cutoffs for dissolved organic solutes of 200-1000 dalton. These properties are intermediate between reverse osmosis membranes with a salt rejection of more than 90 % and molecular weight cut-off of less than 50 and ultrafiltration membranes with a salt rejection of less than 5 %. [Pg.208]

Although some nanofiltration membranes are based on cellulose acetate, most are based on interfacial composite membranes. The preparation procedure used to form these membranes can result in acid groups attached to the polymeric backbone. Neutral solutes such as lactose, sucrose and raffinose are not affected by the presence of charged groups and the membrane rejection increases in proportion to solute size. Nanofiltration membranes with molecular weight cut-offs to neutral solutes between 150 and 1500 dalton are produced. Typical rejection curves for low molecular weight solutes by two representative membranes are shown in Figure 5.13 [35],... [Pg.208]

The rejection of salts by nanofiltration membranes is more complicated and depends on both molecular size and Donnan exclusion effects caused by the acid groups attached to the polymer backbone. The phenomenon of Donnan exclusion is described in more detail in Chapter 10. In brief, charged groups tend to exclude ions of the same charge, particularly multivalent ions while being freely permeable to ions of the opposite charge, particularly multivalent ions. [Pg.208]

The neutral nanofiltration membrane rejects the various salts in proportion to molecular size, so the order of rejection is simply... [Pg.208]

Figure 5.13 Rejection of neutral solutes by two membrane types spanning the range of commonly available nanofiltration membranes [35]... Figure 5.13 Rejection of neutral solutes by two membrane types spanning the range of commonly available nanofiltration membranes [35]...
The cationic nanofiltration membrane has negative groups attached to the polymer backbone. These negative charges repel negative anions, such as SO42, while attracting positive cations, particularly divalent cations such as Ca2+. The result is an order of salt rejection... [Pg.209]

Many nanofiltration membranes follow these rules, but oftentimes the behavior is more complex. Nanofiltration membranes frequently combine both size and Donnan exclusion effects to minimize the rejection of all salts and solutes. These so-called low-pressure reverse osmosis membranes have very high rejections and high permeances of salt at low salt concentrations, but lose their selectivity at salt concentrations above 1000 or 2000 ppm salt in the feed water. The membranes are therefore used to remove low levels of salt from already relatively clean water. The membranes are usually operated at very low pressures of 50-200 psig. [Pg.209]

Figure 5.14 Salt rejection with neutral, anionic and cationic nanofiltration membranes showing the effect of Donnan exclusion and solute size on relative rejections. Data of Peters et al. [36]... Figure 5.14 Salt rejection with neutral, anionic and cationic nanofiltration membranes showing the effect of Donnan exclusion and solute size on relative rejections. Data of Peters et al. [36]...
Membrane filtration (nanofiltration) Partial rejection of DOM Decolorization, softening... [Pg.393]


See other pages where Nanofiltration rejection is mentioned: [Pg.153]    [Pg.155]    [Pg.155]    [Pg.155]    [Pg.2035]    [Pg.2036]    [Pg.360]    [Pg.284]    [Pg.527]    [Pg.54]    [Pg.222]    [Pg.153]    [Pg.155]    [Pg.155]    [Pg.429]    [Pg.82]    [Pg.229]    [Pg.392]    [Pg.142]    [Pg.253]    [Pg.254]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Nanofiltration

Reject, rejects

Rejects

© 2024 chempedia.info