Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

N-Pentane, reactions

Figure 4 shows the relative catalytic activity on commercially coked catalyst sampled during the commercial cycle for n-pentane reactions as a function of the... [Pg.110]

Fig. 4 (left). Relative catalytic activity for the n-pentane reactions at 500 C on commercially coked catalysts as a function of carbon content. A, isomerization. , hydrocracking. , dehydrocyclization. o hydrogenolysis... [Pg.110]

The apparatus for the preparation of n-butyllithium consists of a three-necked flask fitted with a mercury-sealed stirrer, a dropping funnel, and a reflux condenser. The apparatus is assembled hot, and air is immediately displaced by a stream of dry nitrogen which enters through the condenser. A solution of 37 ml. (0.35 mol) of n-butyl chloride in 50 ml. of n-pentane is added slowly (about one drop per second) to small pieces of lithium wire (5.0 g. 0.71 mol) suspended in 80 ml. of n-pentane. Reaction begins after a short induction period (about 10 minutes), producing a... [Pg.20]

Perhydrodlpyrldlno(l,2-a][l, 2 -c]-pyrlmldlne (2). (a) To an ice-cooled solution of 2-(2-(pipendyl)ethyll pipendine 1 (3.2 g, 10 2 mmol) in EtaO (200 mL) was added N-chlorosuccinimlde (NCS) (1.7 g, 12 7 mmol) Under stirring, the reaction mixture was inadated with a 300 W high pressure mercury lamp under N2 for 5 h. The precipitate was filtered, dryed and extracted with n-pentane Evaporation of the solvent and distillation gave 1.0 g of 2 (50%). bp 140 C (20 torr)... [Pg.175]

Solvent polarity is also important in directing the reaction bath and the composition and orientation of the products. For example, the polymerization of butadiene with lithium in tetrahydrofuran (a polar solvent) gives a high 1,2 addition polymer. Polymerization of either butadiene or isoprene using lithium compounds in nonpolar solvent such as n-pentane produces a high cis-1,4 addition product. However, a higher cis-l,4-poly-isoprene isomer was obtained than when butadiene was used. This occurs because butadiene exists mainly in a transoid conformation at room temperature (a higher cisoid conformation is anticipated for isoprene) ... [Pg.308]

Wells et al. characterized group 13-stibine adducts by single crystal X-ray structure analyses first in 1997 [35]. The solid state structures of three borane-stibine adducts of the type X3B—Sb(Tms)3 (X = Cl 6, Br 7, I 8), obtained by reaction of boron trihalides BX3 and Sb(Tms)3 in n-pentane, were determined. [Pg.124]

Hence, the rate depends only on the ratio of the partial pressures of hydrogen and n-pentane. Support for the mechanism is provided by the fact that the rate of n-pentene isomerization on a platinum-free catalyst is very similar to that of the above reaction. The essence of the bifunctional mechanism is that the metal converts alkanes into alkenes and vice versa, enabling isomerization via the carbenium ion mechanism which allows a lower temperature than reactions involving a carbo-nium-ion formation step from an alkane. [Pg.367]

Other types of non-micro-channel, non-micro-flow micro reactors were used for catalyst development and testing [51, 52]. A computer-based micro-reactor system was described for investigating heterogeneously catalyzed gas-phase reactions [52]. The micro reactor is a Pyrex glass tube of 8 mm inner diameter and can be operated up to 500 °C and 1 bar. The reactor inner volume is 5-10 ml, the loop cycle is 0.9 ml, and the pump volume adds a further 9 ml. The reactor was used for isomerization of neopentane and n-pentane and the hydrogenolysis of isobutane, n-butane, propane, ethane, and methane at Pt with a catalyst. [Pg.18]

The temperature dependence of the selectivity for isomerization versus hydrogenolysis depends on the type of catalyst. Thus, over thick platinum film catalysts this selectivity was temperature independent for the reaction of the butanes and neopentane (24). However, in Boudart and Ptak s (122) reaction of neopentane over platinum/carbon the selectivity to isomerization decreased slightly with increasing temperature while Kikuchi et al. (128) found an increased trend for isomerization in the reaction of n-pentane over platinum/silica and platinum/carbon catalysts. [Pg.30]

Platinum is an important example of a metal where, even on an uncontaminated surface such as is offered by an evaporated film, there is a strong tendency for only one C—C bond to be ruptured in any particular reacting molecule. On this basis, one may express the distribution of reaction products in terms of relative C—C bond rupture probabilities. Some data of this sort are contained in Table XI for thick and ultrathin film catalysts, and for comparison there are included some data for reactions on a silica-supported catalyst containing 0.8% platinum. These data all refer to reactions carried out in the presence of a large excess of hydrogen, although the results of Kikuchi et al. (128) indicate that on platinum catalysts the position of C—C bond rupture (in n-pentane) is very little dependent on hydrogen pressure. The data in Table XI show that, on the whole, the 0.8% platinum/silica catalyst used by Matsumoto et al. (110) was inter-... [Pg.63]

Polymerization/lsomerization. The polymerization of 5-methyl-1,4-hexadiene (>99% pure) was carried out in n-pentane with a (5-TiCl3/Et2AlCl catalyst at 0°C according to the procedure described previously (14). To assess monomer disappearance and identify isomerization products, samples were withdrawn at specified intervals from the reaction mixture for GLC analysis (14). The final polymer conversion was determined by precipitation in excess methanol. [Pg.173]

A solution of 10.5 g. (0.046 mol) of freshly distilled bis(tri-fluoromethyl)-l,2-dithiete (Note 2) in 200 ml. of n-pentane is cooled to —10° in a 1-1. round-bottomed flask equipped with an efficient reflux condenser and protected from moist air by a dry nitrogen blanket. A solution of 3.0 ml. (0.023 mol) of nickel carbonyl dissolved in 100 ml. of w-pentane is added down the condenser in one portion to this solution. The mixture is swirled to mix. An intense blue-violet color develops in about 15 to 20 seconds and after 1 to 2 minutes, vigorous evolution of carbon monoxide occurs. This evolution subsides in 10 minutes and the deep violet solution is allowed to warm to 0° during 2 hours to ensure complete reaction. Most of the pentane is removed by distillation at atmospheric pressure, the remaining 50 to 60 ml. is removed in vacuo (0.1 mm.), and the resultant crystalline mass is evacuated (0.1 mm.) at 50° for 4 hours. The crude product consists of shiny black-purple needles and weighs 11.8 g. (98%). Recrystallization from dry benzene (Note 3) gives shiny black crystals, m.p. 134 to 135° (sealed tube). The complex is air-stable but should be kept out of contact with moist air. [Pg.27]

With propene, n-butene, and n-pentene, the alkanes formed are propane, n-butane, and n-pentane (plus isopentane), respectively. The production of considerable amounts of light -alkanes is a disadvantage of this reaction route. Furthermore, the yield of the desired alkylate is reduced relative to isobutane and alkene consumption (8). For example, propene alkylation with HF can give more than 15 vol% yield of propane (21). Aluminum chloride-ether complexes also catalyze self-alkylation. However, when acidity is moderated with metal chlorides, the self-alkylation activity is drastically reduced. Intuitively, the formation of isobutylene via proton transfer from an isobutyl cation should be more pronounced at a weaker acidity, but the opposite has been found (92). Other properties besides acidity may contribute to the self-alkylation activity. Earlier publications concerned with zeolites claimed this mechanism to be a source of hydrogen for saturating cracking products or dimerization products (69,93). However, as shown in reaction (10), only the feed alkene will be saturated, and dehydrogenation does not take place. [Pg.272]

The multi-functionality of metal oxides1,13 is one of the key aspects which allow realizing selectively on metal oxide catalysts complex multi-step transformations, such as w-butane or n-pentane selective oxidation.14,15 This multi-functionality of metal oxides is also the key aspect to implement a new sustainable industrial chemical production.16 The challenge to realize complex multi-step reactions over solid catalysts and ideally achieve 100% selectivity requires an understanding of the surface micro-kinetic and the relationship with the multi-functionality of the catalytic surface.17 However, the control of the catalyst multi-functionality requires the ability also to control their nano-architecture, e.g. the spatial arrangement of the active sites around the first centre of chemisorption of the incoming molecule.1... [Pg.365]

A material balance was observed that is consistent with the proposed mechanism within the limits of experimental error. The methane/propane ratio increases from 0.06 at 1 54 torr to 0.11 at 0.54 torr. Considerable uncertainty (approx. 50%) must be attached to these ratios, but the trend is consistent with the higher yield of methane observed by Thrush91 at pressure below 0.1 torr. Fischer and Mains92 question the occurrence of reaction (6) as they could not detect any n-pentane in their reaction products. At the high ethyl radical concentrations obtained in flash photolysis this product would certainly be expected, if a significant concentration of thermal ethyl radicals were present. However, Thrush was unable to detect ethyl radicals spectroscopically under his experimental conditions. Therefore all reactions of ethyl in his system must involve C2H and the extent to which... [Pg.227]

A sensitive method for primary amines is shown in reaction 2, leading to the corresponding 7V-benzenesulfonyl-/V-trifluoroacetyl derivatives. These can be determined by GC-ECD using SE-30 columns LOD 1-5 pg, which is about 200 times more sensitive than GC-FID. The method was applied for determination of phenethylamine (33) in urine110. This analysis was performed also by LLE into n-pentane, derivatization to the benzenesulfonamide and GC-FPD using a capillary column recoveries of aliphatic primary amines in urine were 91-107%, RSD 0.2-4.5%111,112. Amines in environmental waters and sediments were determined after LLE with dichloromethane, derivatization with benzenesulfonyl chloride and GC-SIM-MS LOD 0.02-2 pg/L of water and 0.5-50 ng/g of sediment113. [Pg.1065]


See other pages where N-Pentane, reactions is mentioned: [Pg.180]    [Pg.175]    [Pg.180]    [Pg.175]    [Pg.820]    [Pg.854]    [Pg.856]    [Pg.513]    [Pg.631]    [Pg.463]    [Pg.25]    [Pg.76]    [Pg.131]    [Pg.242]    [Pg.159]    [Pg.120]    [Pg.36]    [Pg.37]    [Pg.66]    [Pg.336]    [Pg.346]    [Pg.225]    [Pg.206]    [Pg.365]    [Pg.158]    [Pg.131]    [Pg.81]    [Pg.259]    [Pg.395]    [Pg.77]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Pentane reaction

© 2024 chempedia.info