Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomers in cellulose

The most abundant organic molecule in the biosphere is cellulose, a polysaccharide that is the principal building material for plants. Like amylose, cellulose is a linear polymer of glucose. Unlike amylose, however, the glucose monomers in cellulose are in the ji configuration (see Figure IS-lSt. [Pg.930]

Kaizerman, S., G. Mino, and L. F. Meinhold The polymerization of vinyl monomers in cellulosic fibers. Textile Research J. 32, 136 (1962). [Pg.150]

There are many chemical methods for generating radicals reported in the hterature that do not involve conventional initiators. Specific examples are included in References 64—79. Most of these radical-generating systems carmot broadly compete with the use of conventional initiators in industrial polymer apphcations owing to cost or efficiency considerations. However, some systems may be weU-suited for initiating specific radical reactions or polymerizations, eg, grafting of monomers to cellulose using ceric ion (80). [Pg.230]

MMA onto cellulose was carried out by Hecker de Carvalho and Alfred using ammonium and potassium persulfates as radical initiators [30]. Radical initiators such as H2O2, BPO dicumylperoxide, TBHP, etc. have also been used successfully for grafting vinyl monomers onto hydrocarbon backbones, such as polypropylene and polyethylene. The general mechanism seems to be that when the polymer is exposed to vinyl monomers in the presence of peroxide under conditions that permit decomposition of the peroxide to free radicals, the monomer becomes attached to the backbone of the polymer and pendant chains of vinyl monomers are grown on the active sites. The basic mechanism involves abstraction of a hydrogen from the polymer to form a free radical to which monomer adds ... [Pg.485]

This is a highly selective process and very good results on cellulose and starch grafting have been observed. Ceric ion initiated grafting is usually carried out at lower temperatures and, therefore, wastage of monomer in chain transfer reactions is minimal. [Pg.487]

Grafting reactions alter the physical and mechanical properties of the polymer used as a substrate. Grafting differs from normal chemical modification (e.g., functionalization of polymers) in the possibility of tailoring material properties to a specific end use. For example, cellulose derivatization improves various properties of the original cellulose, but these derivatives cannot compete with many of the petrochemically derived synthetic polymers. Thus, in order to provide a better market position for cellulose derivatives, there is little doubt that further chemical modification is required. Accordingly, grafting of vinyl monomers onto cellulose or cellulose derivatives may improve the intrinsic properties of these polymers. [Pg.501]

The use of ceric ions to initiate graft polymerization was first discussed by Mino and Kaizerman in 1958 [12]. Schwab and coworkers [13] were among the first to extend this method to the grafting of cellulose. Following their work, numerous papers have appeared in the literature on the grafting of vinyl monomers onto cellulose by this technique. [Pg.503]

Partial replacement of ethanol by methanol has nearly no effect. In the case of propanol an increase in grafting is visible. This can be attributed to the mixing of higher carbon alcohols, e.g., butanol and isobutanol, with the active solvent methanol, which increases the miscibility of the monomer in these grafting systems and, consequently, increases the penetration of monomer to the active sites on the cellulose chains. [Pg.538]

The monomer unit in starch and that in cellulose each has the empirical formula C6Hi0Os. These units are about 5.0 A long. Approximately how many units occur and how long are the molecules of cellulose and of the soluble starch ... [Pg.425]

Heterogeneous catalysts, particularly zeolites, have been found suitable for performing transformations of biomass carbohydrates for the production of fine and specialty chemicals.123 From these catalytic routes, the hydrolysis of abundant biomass saccharides, such as cellulose or sucrose, is of particular interest. The latter disaccharide constitutes one of the main renewable raw materials employed for the production of biobased products, notably food additives and pharmaceuticals.124 Hydrolysis of sucrose leads to a 1 1 mixture of glucose and fructose, termed invert sugar and, depending on the reaction conditions, the subsequent formation of 5-hydroxymethylfurfural (HMF) as a by-product resulting from dehydration of fructose. HMF is a versatile intermediate used in industry, and can be derivatized to yield a number of polymerizable furanoid monomers. In particular, HMF has been used in the manufacture of special phenolic resins.125... [Pg.69]

In cellulose II with a chain modulus of 88 GPa the likely shear planes are the 110 and 020 lattice planes, both with a spacing of dc=0.41 nm [26]. The periodic spacing of the force centres in the shear direction along the chain axis is the distance between the interchain hydrogen bonds p=c/2=0.51 nm (c chain axis). There are four monomers in the unit cell with a volume Vcen=68-10-30 m3. The activation energy for creep of rayon yarns has been determined by Halsey et al. [37]. They found at a relative humidity (RH) of 57% that Wa=86.6 kj mole-1, at an RH of 4% Wa =97.5 kj mole 1 and at an RH of <0.5% Wa= 102.5 kj mole-1. Extrapolation to an RH of 65% gives Wa=86 kj mole-1 (the molar volume of cellulose taken by Halsey in his model for creep is equal to the volume of the unit cell instead of one fourth thereof). [Pg.43]

Already in 1955 Polymer Corporation (63) had applied for a patent on a process of treating naturally occurring polymeric substances or their derivatives with ozone containing inert gases and subsequently contacting the ozonized substrates with polymerizable monomers. In the presence of redox activators butadiene, acrylonitrile, and styrene were grafted onto cellulose, starch, casein, gelatin, and rubber. [Pg.126]

Studies in the grafting of mixed monomers to cellulose have also been reported by Sakurada (113). Binary mixtures studied included butadiene with styrene or with acrylonitrile, and styrene with acrylonitrile. Remarkable increases in rate in the case of mixed monomer similar to those found by RAPSON were found in many cases. For example, about 10% of butadiene increased the grafting yield about ten fold. Similar results were found with the addition of acrylonitrile to butadiene and to styrene. Ternary mixtures of monomers were also investigated by both Rapson (109) and Sakurada (113). The large increases in rate with certain mixtures were interpreted by Sakurada as due to a particular balance of gd effects akin in many ways to popcorn polymerization. The effects were found also with polyvinyl alcohol but not with polyethylene where gel effects would perhaps be less prominent. [Pg.137]

Armstrong, and Rutherford have reported extensive studies on the vapor phase grafting of vinyl monomers to cellulosic fibers both mutual and pre-irradiation methods have been used (97, 120). Again, water or another swelling agent was found to be necessary for effective grafting to rayon and cotton for all the monomers studied. In the case of cellulose acetate water was helpful but not necessary except for styrene. Acetic acid and methanol vapors were also found to be effective promotors of vapor phase grafting to cotton and cellulose acetate fibers. [Pg.138]

Graft and block copolymers of cotton cellulose, in fiber, yam, and fabric forms, were prepared by free-radical initiated copolymerization reactions of vinyl monomers with cellulose. The properties of the fibrous cellulose-polyvinyl copolymers were evaluated by solubility, ESR, and infrared spectroscopy, light, electron, and scanning electron microscopy, fractional separation, thermal analysis, and physical properties, including textile properties. Generally, the textile properties of the fibrous copolymers were improved as compared with the properties of cotton products. [Pg.332]


See other pages where Monomers in cellulose is mentioned: [Pg.123]    [Pg.80]    [Pg.744]    [Pg.382]    [Pg.123]    [Pg.80]    [Pg.744]    [Pg.382]    [Pg.233]    [Pg.415]    [Pg.504]    [Pg.507]    [Pg.510]    [Pg.546]    [Pg.581]    [Pg.894]    [Pg.584]    [Pg.192]    [Pg.112]    [Pg.260]    [Pg.29]    [Pg.407]    [Pg.124]    [Pg.467]    [Pg.25]    [Pg.471]    [Pg.116]    [Pg.124]    [Pg.129]    [Pg.129]    [Pg.130]    [Pg.136]    [Pg.139]    [Pg.141]    [Pg.348]    [Pg.10]    [Pg.12]   
See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.209 ]




SEARCH



In cellulose

© 2024 chempedia.info