Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silica monomers

Markowitz et al. developed a different approach, again in an attempt to overcome some of the inherent difficulties that arise when imprinted bulk materials are used as catalysts [82], Here, the authors used a template-directed method to imprint an a-chymotrypsin TSA at the surface of silica nanoparticles, prepared with a number of organically modified silanes as functional monomers. Silica particle formation was performed in a microemulsion, where a mixture of a non-ionic surfactant and... [Pg.339]

The role of the suspension pH and the influence of the monomer, silica and initiator concentrations on the assembly process have been investigated in depth, and analyzed in a quantitative manner. Electrostatic attraction between the polymer end groups and the negatively charged silica surface proved to be the driving force of... [Pg.107]

The way to think of them all is as Si04 tetrahedra (or, in polymer terms, monomers) linked to each other either directly or via a metal ion (M) link. When silica is combined with metal oxides like MgO, CaO or AI2O3 such that the ratio MO/SiOj is 2/1 or greater, then the resulting silicate is made up of separated Si04 monomers (Fig. 16.4a) linked by the MO molecules. (Olivene, the dominant material in the Earth s upper mantle, is a silicate of this type.)... [Pg.170]

When the ratio MO/SiOj is a little less than 2/1, silica dimers form (Fig. 16.4b). One oxygen is shared between two tetrahedra it is called a bridging oxygen. This is the first step in the polymerisation of the monomer to give chains, sheets and networks. [Pg.171]

Another illustrative example of the application of FTIR spectroscopy to problems of interest in adhesion science is provided by the work of Taylor and Boerio on plasma polymerized silica-like films as primers for structural adhesive bonding [15]. Mostly these films have been deposited in a microwave reactor using hexamethyldisiloxane (HMDSO) as monomer and oxygen as the carrier gas. Transmission FTIR spectra of HMDSO monomer were characterized by strong... [Pg.258]

Moleeules that are normally unreactive can be readily polymerized in such a process. Examples include organie gases such as ethane and various organosilanes. Monomers such as hexamethyldisiloxane can be readily polymerized to fonn tightly adherent films having a silica-like structure ... [Pg.445]

All of the eommereial alkyl eyanoaerylate monomers are low-viseosity liquids, and for some applications this can be an advantage. However, there are instances where a viseous liquid or a gel adhesive would be preferred, sueh as for application to a vertical surface or on porous substrates. A variety of viscosity control agents, depending upon the desired properties, have been added to increase the viscosity of instant adhesives [21]. The materials, which have been utilized, include polymethyl methacrylate, hydrophobic silica, hydrophobic alumina, treated quartz, polyethyl cyanoacrylate, cellulose esters, polycarbonates, and carbon black. For example, the addition of 5-10% of amorphous, non-crystalline, fumed silica to ethyl cyanoacrylate changes the monomer viscosity from a 2-cps liquid to a gelled material [22]. Because of the sensitivity of cyanoacrylate esters to basic materials, some additives require treatment with an acid to prevent premature gelation of the product. [Pg.856]

New templated polymer support materials have been developed for use as re versed-phase packing materials. Pore size and particle size have not usually been precisely controlled by conventional suspension polymerization. A templated polymerization is used to obtain controllable pore size and particle-size distribution. In this technique, hydrophilic monomers and divinylbenzene are formulated and filled into pores in templated silica material, at room temperature. After polymerization, the templated silica material is removed by base hydrolysis. The surface of the polymer may be modified in various ways to obtain the desired functionality. The particles are useful in chromatography, adsorption, and ion exchange and as polymeric supports of catalysts (39,40). [Pg.10]

The liquid electrolytes used in lithium batteries can be gelled by addition of a polymer [25] or fumed silica [26], or by cross linking of a dissolved monomer [271. Depending on the mechanical properties, gelled electrolytes can be used as separators, or supported by a conventional [27]... [Pg.557]

Currently, graft post-polymerization of monomers in the gaseous phase (2) is the more widely used process because it has at least two basic advantages. First, side processes of homopolymerization are minimized which reduces the consumption of monomers and makes unnecessary additional treatment of the modified materials with solvents. Second, this method is universal and allows the grafting to the surfaces (such as silica) to be carried out with low radiation yields of active sites as compared to the monomers. [Pg.161]

The polymerization of vinyl monomers on the surface of silica can be induced also by free radical initiators such as azo-bis-isobutyronitrile (AIBN), di-tert-butylperoxide, benzoyl peroxide etc. The selection of initiator type and method of its introduction in polymerizable systems are determined by the nature of monomers and tasks of investigations. Usually, the following procedures are used ... [Pg.161]

The polymerization filling was effected by the ion-coordination mechanism [17-19]. The monomers were ethylene, propylene, allene, os-butylene, butadiene. The fillers were mineral materials such as ash, graphite, silica gel, glass fibers. The ultimate aim of filler conditioning prior to polymerization is to secure, on its surface, metal complex or organometallic catalysts by either physical or chemical methods [17-19],... [Pg.42]

FIGURE 12.10 Tapping mode atomic force microscopy (AFM) images of the section analyzes of ethylene-propylene-diene monomer (EPDM) rubber-melamine fiber composites. A, composite containing no dry bonding system B, composite containing resorcinol, hexamine, and silica in the concentrations 5, 3, and 15 phr, respectively. [Pg.370]

FIGURE 12.18 Stress-strain curves of rubber-fiber composites developed for solid rocket motor insulator A, ethylene-propylene-diene monomer (EPDM) rubber-carbon fiber composites B, EPDM mbber-melamine fiber composites C, EPDM mbber-aramid fiber composites and D, EPDM rubber-aramid pulp composites. 1 and 2 stands for unaged and aged composites respectively. Carbon fiber- and melamine fiber-reinforced composites contain resorcinol, hexamine, and silica in the concentrations 10, 6 and 15, respectively and aramid fiber- and aramid pulp-based composites contain resorcinol, hexamine, and silica in the concentrations 5, 3 and 15, respectively. (From Rajeev, R.S., Bhowmick, A.K., De, S.K., and John, B., Internal communication. Rubber Technology Center, Indian Institute of Technology, Kharagpur, India, 2002.)... [Pg.384]

The model describes the characteristic stress softening via the prestrain-dependent amplification factor X in Equation 22.22. It also considers the hysteresis behavior of reinforced mbbers, since the sum in Equation 22.23 has taken over the stretching directions with ds/dt > 0, only, implying that up and down cycles are described differently. An example showing a fit of various hysteresis cycles of silica-filled ethylene-propylene-diene monomer (EPDM) mbber in the medium-strain regime up to 50% is depicted in Figure 22.12. It must be noted that the topological constraint modulus Gg has... [Pg.619]

FIGURE 22.12 Uniaxial stress-strain cycles of ethylene-propylene-diene monomer (EPDM) samples with 60 phr silica at different prestrains = 10%, 20%, 30%, 40%, and 50% (symbols) and fittings (lines) with the stress-softening model Equations 22.19-22.24. The fitting parameters are indicated. The assumed cluster-size distribution is also shown, which differs from the one in Equation 22.24. (From Kliippel, M. and Heinrich, G., Kautschuk, Gummi, Kunststojfe, 58, 217, 2005. With permission.)... [Pg.620]

The commercial process for the production of vinyl acetate monomer (VAM) has evolved over the years. In the 1930s, Wacker developed a process based upon the gas-phase conversion of acetylene and acetic acid over a zinc acetate carbon-supported catalyst. This chemistry and process eventually gave way in the late 1960s to a more economically favorable gas-phase conversion of ethylene and acetic acid over a palladium-based silica-supported catalyst. Today, most of the world s vinyl acetate is derived from the ethylene-based process. The end uses of vinyl acetate are diverse and range from die protective laminate film used in automotive safety glass to polymer-based paints and adhesives. [Pg.191]


See other pages where Silica monomers is mentioned: [Pg.230]    [Pg.67]    [Pg.217]    [Pg.217]    [Pg.107]    [Pg.230]    [Pg.67]    [Pg.217]    [Pg.217]    [Pg.107]    [Pg.488]    [Pg.259]    [Pg.564]    [Pg.1063]    [Pg.7]    [Pg.432]    [Pg.157]    [Pg.149]    [Pg.160]    [Pg.160]    [Pg.160]    [Pg.161]    [Pg.162]    [Pg.162]    [Pg.163]    [Pg.163]    [Pg.189]    [Pg.22]    [Pg.322]    [Pg.60]    [Pg.84]    [Pg.921]    [Pg.1028]    [Pg.15]    [Pg.121]    [Pg.101]    [Pg.190]    [Pg.72]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



© 2024 chempedia.info