Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer deactivation

Mo catalysts are uniquely effective in the polymerization of S-containing disubstituted acetylenes. Though there is a possibility that S and O in the monomer deactivate group 5 and 6 transition metal catalysts, the basicity of S is weakened by the conjugation with the triple bond, resulting in the lower coordinating ability to the propagating... [Pg.568]

Catalysts of the Ziegler-Natta type are applied widely to the anionic polymerization of olefins and dienes. Polar monomers deactivate the system and cannot be copolymerized with olefins. J. L. Jezl and coworkers discovered that the living chains from an anionic polymerization can be converted to free radicals by the reaction with organic peroxides and thus permit the formation of block copolymers with polar vinyl monomers. In this novel technique of combined anionic-free radical polymerization, they are able to produce block copolymers of most olefins, such as alkylene, propylene, styrene, or butadiene with polar vinyl monomers, such as acrylonitrile or vinyl pyridine. [Pg.10]

A major objective of our research has been to introduce polar groups into polyolefin molecules. With the anionic type of catalysts, copolymerization is very difficult because most nonhydrocarbon vinylic monomers deactivate the catalyst system and stop olefinic polymerization. However, by the AFR route, the desired olefin is completely polymerized before polar monomers are introduced so that high yields of product are possible. [Pg.286]

Pure dry reactants are needed to prevent catalyst deactivation effective inhibitor systems are also desirable as weU as high reaction rates, since many of the specialty monomers are less stable than the lower alkyl acrylates. The alcohol—ester azeotrope (8) should be removed rapidly from the reaction mixture and an efficient column used to minimize reactant loss to the distillate. After the reaction is completed, the catalyst may be removed and the mixture distilled to obtain the ester. The method is particularly useful for the preparation of functional monomers which caimot be prepared by direct esterification. [Pg.156]

The molecular weight of the polymers is controlled by temperature (for the homopolymer), or by the addition of organic acid anhydrides and acid hahdes (37). Although most of the product is made in the first reactor, the background monomer continues to react in a second reactor which is placed in series with the first. When the reaction is complete, a hindered phenoHc or metal antioxidant is added to improve shelf life and processibiUty. The catalyst is deactivated during steam coagulation, which also removes solvent and unreacted monomer. The cmmbs of water-swoUen product are dried and pressed into bale form. This is the only form in which the mbber is commercially available. The mbber may be converted into a latex form, but this has not found commercial appHcation (38). [Pg.555]

At least two catalytic processes have been used to purify halogenated streams. Both utilize fluidized beds of probably noimoble metal catalyst particles. One has been estimated to oxidize >9000 t/yr of chlorinated wastes from a vinyl chloride monomer plant (45). Several companies have commercialized catalysts which are reported to resist deactivation from a wider range of halogens. These newer catalysts may allow the required operating temperatures to be reduced, and stiU convert over 95% of the halocarbon, such as trichlorethylene, from an exhaust stream. Conversions of C-1 chlorocarbons utilizing an Englehardt HDC catalyst are shown in Figure 8. For this system, as the number of chlorine atoms increases, the temperatures required for destmction decreases. [Pg.512]

The paper-impregnation drying oven exhausts contain high concentrations (10—20% LEL) of alcohols and some resin monomer. Vinyl resins and melamine resins, which sometimes also contain organic phosphate fire retardants, may be used for air filters. The organic phosphates could shorten catalyst life depending on the mechanism of reduction of catalyst activity. Mild acid leaching removes iron and phosphoms from partially deactivated catalyst and has restored activity in at least one known case. [Pg.515]

The Ticona materials are prepared by continuous polymerisation in solution using metallocene catalysts and a co-catalyst. The ethylene is dissolved in a solvent which may be the comonomer 2-norbomene itself or another hydrocarbon solvent. The comonomer ratio in the reactor is kept constant by continuous feeding of both monomers. After polymerisation the catalyst is deactivated and separated to give polymers of a low residual ash content and the filtration is followed by several degassing steps with monomers and solvents being recycled. [Pg.280]

In the process of radical polymerization a monomolecular short stop of the kinetic chain arises from the delocalization of the unpaired electron along the conjugated chain and from the competition of the developing polyconjugated system with the monomer for the delivery of rr-electrons to the nf-orbitals of a transition metal catalyst in the ionic coordination process. Such a deactivation of the active center may also be due to an interaction with the conjugated bonds of systems which have already been formed. [Pg.5]

Certain monomers may be able to act as reversible deactivators by a reversible addition-fragmentation mechanism. The monomers are 1,1-disubstituted and generate radicals that are unable or extremely slow to propagate or undergo combination or disproportionation. For these polymerizations the dormant species is a radical and the persistent species is the 1,1 -disubstituted monomer. [Pg.470]

Polymer formation during the Kharasch reaction or ATRA can occur if trapping of the radical (123), by halocarbon or metal complex respectively, is sufficiently slow such that multiple monomer additions can occur. Efficient polymer synthesis additionally requires that the trapping reaction is reversible and that both the activation and deactivation steps are facile. [Pg.486]

Emulsion polymerization has proved more difficult. N " Many of the issues discussed under NMP (Section 9.3.6.6) also apply to ATRP in emulsion. The system is made more complex by both activation and deactivation steps being bimolecular. There is both an activator (Mtn) and a deactivator (ML 1) that may partition into the aqueous phase, although the deactivator is generally more water-soluble than the activator because of its higher oxidation state. Like NMP, successful emulsion ATRP requires conditions where there is no discrete monomer droplet phase and a mechanism to remove excess deactivator built up in the particle phase as a consequence of the persistent radical effect.210 214 Reverse ATRP (Section 9.4,1,2) with water soluble dialky 1 diazcncs is the preferred initiation method/87,28 ... [Pg.498]

Monomers not amenable to direct homopolymerization using a particular reagent can sometimes be copolymcrizcd. For example, NMP often fails with methacrylates (e.g. MMA, BMA), yet copolymerizalions of these monomers with S are possible even when the monomer mix is predominantly composed of the methacrylate monomer,15j This is attributed to the facility of cross propagation and the relatively low steady state concentration of propagating radicals with a terminal MMA (Section 7.4.3.1). MMA can also be copolymerized with S or acrylates at low temperature (60 C).111 Under these conditions, only deactivation of propagating radicals with a terminal MMA unit is reversible, deactivation of chains with a terminal S or acrylate unit is irreversible. Molecular weights should then be controlled by the reactivity ratios and the comonomer concentration rather than by the nitroxide/alkoxyamine concentration. [Pg.527]

Optimal conditions for ATRP depend strongly on the particular monomer(s) to be polymerized. This is mainly due to the strong dependence of the activation-deactivation equilibrium constant (A ), and hence the rate of initiation, on the type of propagating radical (Section 9.4.1.3). When using monomers of different types, polymer isolation and changes in the catalyst are frequently necessary before making the second block... [Pg.542]

The very small number of growing polymer chains, when compared to the monomer concentration results in a very low overall concentration of free control agent and leads to inefficient capping of chain ends. One solution to this problem is the addition of a free or unbound control agent to the polymerization medium. This can take the form of a low molecular weight alkoxyamine, ATRP initiator, RAFT agent or, alternatively, free deactivator such as nitroxide or Cu(II). This species is often called a sacrificial agent. This solution also leads to the formation of free polymer that must ultimately be removed from the brush. [Pg.562]

To be eligible to living anionic polymerization a vinylic monomer should carry an electron attracting substituent to induce polarization of the unsaturation. But it should contain neither acidic hydrogen, nor strongly electrophilic function which could induce deactivation or side reactions. Typical examples of such monomers are p-aminostyrene, acrylic esters, chloroprene, hydroxyethyl methacrylate (HEMA), phenylacetylene, and many others. [Pg.149]

The ideal electropolymerization scheme (Eq. (5.5.39)) is further complicated by the fact that lower oligomers can react with nucleophilic substances (impurities, electrolyte anions, and solvent) and are thus deactivated for subsequent polymerization. The rate of these undesired side reactions apparently increases with increasing oxidation potential of the monomer, for example, in the series ... [Pg.337]

All of these observations on the copolymerizations of isopropenylferrocene can again be attributed to the extreme stability of the intermediate carbenium ions. In order to obtain more conclusive evidence of this unreactivity, an attempt was made to destabilize the vinylferrocene by introducing a deactivating electron-withdrawing trifluoromethyl substituent at the a-position. For this purpose, the new monomer a-trifluoromethylvinylferrocene (TVF) was synthesized by the route shown below 0... [Pg.457]

A process for the hydrogenation of adiponitrile and 6-aminocapronitrile to hexamethylenediamine in streams of depolymerized Nylon-6,6 or a blend of Nylon-6 and Nylon-6,6 has been described. Semi-batch and continuous hydrogenation reactions of depolymerized (ammonolysis) products were performed to study the efficacy of Raney Ni 2400 and Raney Co 2724 catalysts. The study showed signs of deactivation of Raney Ni 2400 even in the presence of caustic, whereas little or no deactivation of Raney Co 2724 was observed for the hydrogenation of the ammonolysis product. The hydrogenation products from the continuous run using Raney Co 2724 were subsequently distilled and the recycled hexamethylenediamine (HMD) monomer was polymerized with adipic acid. The properties of the polymer prepared from recycled HMD were found to be identical to that obtained from virgin HMD. [Pg.37]


See other pages where Monomer deactivation is mentioned: [Pg.525]    [Pg.10]    [Pg.525]    [Pg.173]    [Pg.23]    [Pg.935]    [Pg.126]    [Pg.525]    [Pg.10]    [Pg.525]    [Pg.173]    [Pg.23]    [Pg.935]    [Pg.126]    [Pg.357]    [Pg.413]    [Pg.415]    [Pg.524]    [Pg.525]    [Pg.507]    [Pg.610]    [Pg.882]    [Pg.6]    [Pg.9]    [Pg.189]    [Pg.123]    [Pg.456]    [Pg.497]    [Pg.95]    [Pg.150]    [Pg.71]    [Pg.51]    [Pg.144]    [Pg.458]    [Pg.41]    [Pg.46]    [Pg.298]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



© 2024 chempedia.info