Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monoamine oxidases synthesis

M. Artico, A. Lavechia, E. Novellino, O. Befani, P. Turini, E. Agostinelli, J. Med. Chem. 2007, 50, 922-931. New pyrrole inhibitors of monoamine oxidase synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. [Pg.244]

Dopamine. Dopamine (DA) (2) is an intermediate in the synthesis of NE and Epi from tyrosine. DA is localized to the basal ganglia of the brain and is involved in the regulation of motor activity and pituitary hormone release. The actions of DA are terminated by conversion to dihydroxyphenylacetic acid (DOPAC) by monoamine oxidase-A and -B (MAO-A and -B) in the neuron following reuptake, or conversion to homovanillic acid (HVA) through the sequential actions of catechol-0-methyl transferase (COMT) and MAO-A and -B in the synaptic cleft. [Pg.540]

Mitochondrial monoamine oxidase, 1, 253 Mitomycin synthesis, 7, 658, 659 Mitomycin-A, 7, 93 Mitomycin-B, 7, 93 Mitomycin-C, 7, 93 as antitumor drug, 4, 374 Mixed function oxidases, 1, 224 Mobam... [Pg.703]

Methylphenidate like cocaine largely acts by blocking reuptake of monoamines into the presynaptic terminal. Methylphenidate administration produces an increase in the steady-state (tonic) levels of monoamines within the synaptic cleft. Thus, DAT inhibitors, such as methylphenidate, increase extracellular levels of monoamines. In contrast, they decrease the concentrations of the monoamine metabolites that depend upon monoamine oxidase (MAO), that is, HVA, but not catecholamine-o-methyltransferase (COMT), because reuptake by the transporter is required for the formation of these metabolites. By stimulating presynaptic autoreceptors, methylphenidate induced increase in dopamine transmission can also reduce monoamine synthesis, inhibit monoamine neuron firing and reduce subsequent phasic dopamine release. [Pg.1039]

The synthesis and metabolism of trace amines and monoamine neurotransmitters largely overlap [1]. The trace amines PEA, TYR and TRP are synthesized in neurons by decarboxylation of precursor amino acids through the enzyme aromatic amino acid decarboxylase (AADC). OCT is derived from TYR. by involvement of the enzyme dopamine (3-hydroxylase (Fig. 1 DBH). The catabolism of trace amines occurs in both glia and neurons and is predominantly mediated by monoamine oxidases (MAO-A and -B). While TYR., TRP and OCT show approximately equal affinities toward MAO-A and MAO-B, PEA serves as preferred substrate for MAO-B. The metabolites phenylacetic acid (PEA), hydroxyphenylacetic acid (TYR.), hydroxymandelic acid (OCT), and indole-3-acetic (TRP) are believed to be pharmacologically inactive. [Pg.1218]

Just as the synthesis of DA and NA is similar so is their metabolism. They are both substrates for monoamine oxidase (MAO) and catechol-O-methyl transferase (COMT). In the brain MAO is found in, or attached to, the membrane of the intraneuronal mitochondria. Thus it is only able to deaminate DA which has been taken up into nerve endings and blockade of DA uptake leads to a marked reduction in the level of its deaminated metabolites and in particular DOPAC. The final metabolite, homovanillic... [Pg.141]

Neff, NH and Costa, E (1966) The influence of monoamine oxidase inhibition on catecholamine synthesis. Life Sci. 5 951-959. [Pg.184]

Figure 9.4 The synthesis and metabolism of 5-HT. The primary substrate for the pathway is the essential amino acid, tryptophan and its hydroxylation to 5-hydrox5dryptophan is the rate-limiting step in the synthesis of 5-HT. The cytoplasmic enzyme, monoamine oxidase (MAOa), is ultimately responsible for the catabolism of 5-HT to 5-hydroxyindoleacetic acid... Figure 9.4 The synthesis and metabolism of 5-HT. The primary substrate for the pathway is the essential amino acid, tryptophan and its hydroxylation to 5-hydrox5dryptophan is the rate-limiting step in the synthesis of 5-HT. The cytoplasmic enzyme, monoamine oxidase (MAOa), is ultimately responsible for the catabolism of 5-HT to 5-hydroxyindoleacetic acid...
Grahame-Smith, DG (1971) Studies in vivo on the relationship between brain tryptophan, brain 5HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J. Neurochem. 18 1053-1066. [Pg.286]

FIGURE 14-3 Synthesis and metabolism of histamine. Solid lines indicate the pathways for histamine formation and catabolism in brain. Dashed lines show additional pathways that can occur outside the nervous system. HDC, histidine decarboxylase HMT, histamine methyltransferase DAO, diamine oxidase MAO, monoamine oxidase. Aldehyde intermediates, shown in brackets, have been hypothesized but not isolated. [Pg.253]

FIGURE 46-3 Synthesis and metabolism of dopamine. MAO, monoamine oxidase COMT, catechol-O-methyltransferase HVA, homovanillic acid DOPAC, 3,4-dihydroxyphenylacetic acid. [Pg.765]

Figure 2.16. Pathways for the synthesis and metabolism of the catecholamines. A=phenylalanine hydroxylase+pteridine cofactor+Oj B tyrosine hydroxylase+ tetrahydropteridme+Fe+ +Oj C=dopa decarboxylase+pyridoxal phosphate D= dopamine beta-oxidase+ascorbate phosphate+Cu+ +Oj E=phenylethanolamine N-methyltransferase+S-adenosylmethionine l=monoamine oxidase and aldehyde dehydrogenase 2=catechol-0-methyltransferase+S-adenosylmethionine. Figure 2.16. Pathways for the synthesis and metabolism of the catecholamines. A=phenylalanine hydroxylase+pteridine cofactor+Oj B tyrosine hydroxylase+ tetrahydropteridme+Fe+ +Oj C=dopa decarboxylase+pyridoxal phosphate D= dopamine beta-oxidase+ascorbate phosphate+Cu+ +Oj E=phenylethanolamine N-methyltransferase+S-adenosylmethionine l=monoamine oxidase and aldehyde dehydrogenase 2=catechol-0-methyltransferase+S-adenosylmethionine.
There is evidence that the compartmentalization of 5-HT in the nerve terminal is important in regulating its synthesis. It appears that 5-HT is synthesized in excess of normal physiological requirements and that some of the amine which is not immediately transported into the storage vesicle is metabolized by intraneuronal monoamine oxidase. Another autoregulatory mechanism governing 5-HT synthesis relies on the rise in the intersynaptic concentration of the amine stimulating the autoreceptor of the nerve terminal. [Pg.71]

Figure 2.18. The major pathway leading to the synthesis and metabolism of 5-hydroxytryptamine (5-HT). Metabolism of tryptophan to tryptamine is a minor pathway which may be of functional importance following administration of a monoamine oxidase (MAO) inhibitor. Tryptamine is a trace amine. L-Aromatic amino acid decarboxylase is also known to decarboxylate dopa and therefore the term "L-aromatic amino acid decarboxylase" refers to both "dopa decarboxylase"... Figure 2.18. The major pathway leading to the synthesis and metabolism of 5-hydroxytryptamine (5-HT). Metabolism of tryptophan to tryptamine is a minor pathway which may be of functional importance following administration of a monoamine oxidase (MAO) inhibitor. Tryptamine is a trace amine. L-Aromatic amino acid decarboxylase is also known to decarboxylate dopa and therefore the term "L-aromatic amino acid decarboxylase" refers to both "dopa decarboxylase"...
Recently research has focused on the action of lithium on serotonergic function. Lithium has been shown to facilitate the uptake and synthesis of 5-HT, to enhance its release and to increase the transport of tryptophan into the nerve terminal, an effect which probably contributes to the increased 5-HT synthesis. The net effect of these changes is to produce postsynaptic receptor events, which might explain why lithium, in combination with tryptophan and a monoamine oxidase inhibitor or a 5-HT uptake inhibitor, is often effective in therapy-resistant depression. [Pg.203]

The major routes for the synthesis and metabolism of noradrenaline in adrenergic nerves [375], together with the names of the enzymes concerned, are shown in Figure 3.1. Under normal conditions the rate controlling step in noradrenaline synthesis is the first, and the tissue noradrenaline content can be markedly lowered by inhibition of tyrosine hydroxylase [376]. Tissue noradrenaline levels can also be lowered, but to a lesser extent, by inhibition of dopamine-(3-oxidase [377, 378]. However, the noradrenaline depletion produced by guanethidine is unlikely to result from inhibition of synthesis, since intra-cisternal injection of guanethidine does not prevent the accumulation of noradrenaline which follows brain monoamine oxidase inhibition, even though it does cause depletion of brain noradrenaline [323]. [Pg.188]

Varicosity of a noradrenergic neuron showing synthesis and storage of norepinephrine. Also shown Is the release of norepinephrine (NE) and multiple routes for degradation. COMT, catechol-O-methyltransferase MAO, monoamine oxidase. [Pg.89]

Since the enzyme that converts dopamine to norepinephrine (dopamine (3-hydroxylase) is located only within the vesicles, the transport of dopamine into the vesicle is an essential step in the synthesis of norepinephrine. This same transport system is essential for the storage of norepinephrine. There is a tendency for norepinephrine to leak from the vesicles into the cytosol. If norepinephrine remains in the cytosol, much of it will be destroyed by a mitochondrial enzyme, monoamine oxidase MAO). However, most of the norepinephrine that leaks out of the vesicle is rapidly returned to the storage vesicles by the same transport system that carries dopamine into the storage vesicles. It is important for a proper understanding of drug action to remember that this single transport system, called vesicular transport, is an essential element of both synthesis and storage of norepinephrine. [Pg.90]

Synthesis and Biochemical Evaluation of Fiuorinated Monoamine Oxidase Inhibitors... [Pg.661]

W.G. Tatton, J.S. Wadia, W.Y. Ju, R.M. Chalmers-Redman, N.A. Tatton, (-)-Deprenyl reduces neuronal apoptosis and facilitates neuronal outgrowth by altering protein synthesis without inhibiting monoamine oxidase, J. Neural. Transm. Suppl. 48 (1996) 45-59. [Pg.690]

FI6URE 15 1. Pathway followed by norepinephrine (NE) from synthesis, storage, release, and clearance 1) inhibition of norepinephrine reuptake 2 inhibition of deamination by monoamine oxidase (MAO) 3 direct agonism/antagonism of postsynaptic receptors 4) antagonism of autoinhibitory presynaptic receptors. [Pg.242]


See other pages where Monoamine oxidases synthesis is mentioned: [Pg.647]    [Pg.647]    [Pg.676]    [Pg.704]    [Pg.43]    [Pg.788]    [Pg.198]    [Pg.169]    [Pg.33]    [Pg.20]    [Pg.162]    [Pg.135]    [Pg.70]    [Pg.76]    [Pg.167]    [Pg.274]    [Pg.223]    [Pg.316]    [Pg.167]    [Pg.820]    [Pg.33]    [Pg.238]    [Pg.243]    [Pg.92]    [Pg.166]    [Pg.28]    [Pg.356]    [Pg.676]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Monoamine oxidase

Oxidases monoamine oxidase

© 2024 chempedia.info