Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monitors detection methods

A second use of arrays arises in the detection of trace components of material introduced into a mass spectrometer. For such very small quantities, it may well be that, by the time a scan has been carried out by a mass spectrometer with a point ion collector, the tiny amount of substance may have disappeared before the scan has been completed. An array collector overcomes this problem. Often, the problem of detecting trace amounts of a substance using a point ion collector is overcome by measuring not the whole mass spectrum but only one characteristic m/z value (single ion monitoring or single ion detection). However, unlike array detection, this single-ion detection method does not provide the whole spectrum, and an identification based on only one m/z value may well be open to misinterpretation and error. [Pg.216]

Biosensors (qv) and DNA probes ate relatively new to the field of diagnostic reagents. Additionally, a neat-infrared (nit) monitoring method (see Infrared TECHNOLOGY AND RAMAN SPECTROSCOPY), a teagenfless, noninvasive system, is under investigation. However, prospects for a nit detection method for glucose and other analytes ate uncertain. [Pg.44]

Analysis of zinc solutions at the purification stage before electrolysis is critical and several metals present in low concentrations are monitored carefully. Methods vary from plant to plant but are highly specific and usually capable of detecting 0.1 ppm or less. Colorimetric process-control methods are used for cobalt, antimony, and germanium, turbidimetric methods for cadmium and copper. Alternatively, cadmium, cobalt, and copper are determined polarographicaHy, arsenic and antimony by a modified Gutzeit test, and nickel with a dimethylglyoxime spot test. [Pg.410]

Plasma atomic emission spectrometry is also employed as a detection method for gc (see Plasma technology). By monitoring selected emission lines a kind of selective detection based on elemental composition can be achieved (see Spectroscopy). [Pg.108]

Some Formal Considerations. As with most natural toxins, detection methods for the saxitoxins are an essential prerequisite for most studies of them, as well as for monitoring programs to ensure the safety of food products that may contain them. Furthermore, the degree of success of such efforts is dependant on the characteristics of the detection method used. Detection of the saxitoxins is particularly challenging because of the large number of different but related compounds that must be dealt with, the low levels that must be detected, and their chemical characteristics. Given these factors it is useful to dwell briefly on some underlying principles. [Pg.43]

The most widely regarded approach to accomplish the determination of as many pesticides as possible in as few steps as possible is to use MS detection. MS is considered a universally selective detection method because MS detects all compounds independently of elemental composition and further separates the signal into mass spectral scans to provide a high degree of selectivity. Unlike GC with selective detectors, or even atomic emission detection (AED), GC/MS may provide acceptable confirmation of the identity of analytes without the need for further information. This reduces the need to re-inject a sample into a separate GC system (usually GC/MS) for pesticide confirmation. Through the use of selected ion monitoring (SIM), efficient ion-trap or quadrupole devices, and/or tandem mass spectrometry (MS/MS), modern GC/MS instruments provide LODs similar to or lower than those of selective detectors, depending on the analytes, methods, and detectors. [Pg.762]

Starting with this definition the semiconductor diemical sensors can be arbitrary classified with respect to following features the type of electrophysical characteristics diosen for monitoring, such as electric conductivity, thermal-electromotive force, work function of electron, etc. type and nature of semiconductor adsorbent used as an operational element of the sensor and, finally, the detection method used for monitoring the adsorption response of electrophysical characteristics of die sensor. [Pg.5]

The overall performance of a separation method is intrinsically linked to that of the detector used as part of the system. A detector is a device that monitors, in the dimensions of space or time, the presence of the components of a mixture that has been subjected to a chromatographic process. The detection methods provide evidence concerning the quality of the separation and serve especially to increase sensitivity and selectivity. The quantitative aspects of chromatographic analyses are dependent upon the detector capabilities. [Pg.177]

Principles and Characteristics In some cases, analysis using an appropriate combination of a single separation and detection method is not satisfactory, and it becomes necessary to utilise a combination of separation methods and/or multidetector monitoring. This approach is termed multidimensional, or coupled chromatography and is meant to describe a specific sequential combination of chromatographic procedures. [Pg.545]

Gas detection methods may be split into two groups, (i) direct methods, which monitor a physical parameter of the target gas, and (ii) indirect methods, which use a chemical reaction or indicator to show the concentration of the gas being sensed. This division of methods may be further split into optical sensing techniques and non-optical techniques. This review will predominantly focus on direct optical-spectroscopy fibre sensing techniques. [Pg.457]

Various optical detection methods have been used to measure pH in vivo. Fluorescence ratio imaging microscopy using an inverted microscope was used to determine intracellular pH in tumor cells [5], NMR spectroscopy was used to continuously monitor temperature-induced pH changes in fish to study the role of intracellular pH in the maintenance of protein function [27], Additionally, NMR spectroscopy was used to map in-vivo extracellular pH in rat brain gliomas [3], Electron spin resonance (ESR), which is operated at a lower resonance, has been adapted for in-vivo pH measurements because it provides a sufficient RF penetration for deep body organs [28], The non-destructive determination of tissue pH using near-infrared diffuse reflectance spectroscopy (NIRS) has been employed for pH measurements in the muscle during... [Pg.286]

Failure detection methods are based on successive monitoring of the innovation sequence and statistical tests. Basically, the standard filter calculations are performed until some form of aberrant behavior is detected. A test was suggested first by Wilsky and Jones (1976) and is based on the following. [Pg.162]

The fact that ET and conformational reactions thus are sequential (Scheme III), and not concerted, is an important factor in efforts to disentangle eonforma-tional and electron-transfer influences, because standard detection methods monitor only the ET event, and not conformational changes within one electronic state. In many, if not most, instances the measured time course of a single gated ET reaction is likely to be indistinguishable from a reaction without gating. [Pg.100]

The development lab can benefit from valuable objective data to detect method shortcomings and to identify gaps in the method development process. The feedback on method performance should be discussed regularly. During the monitoring a number of key performance indicators are recorded and filled out in feedback sheets by the application labs (stability and operational labs) each time the method is applied. The method feedback sheet is sent together with the method description to the application labs at transfer. An example of such a feedback sheet is shown in Figure 22. [Pg.93]


See other pages where Monitors detection methods is mentioned: [Pg.31]    [Pg.2949]    [Pg.210]    [Pg.44]    [Pg.395]    [Pg.10]    [Pg.768]    [Pg.133]    [Pg.234]    [Pg.239]    [Pg.147]    [Pg.140]    [Pg.148]    [Pg.346]    [Pg.651]    [Pg.741]    [Pg.222]    [Pg.219]    [Pg.65]    [Pg.5]    [Pg.285]    [Pg.56]    [Pg.66]    [Pg.104]    [Pg.341]    [Pg.25]    [Pg.45]    [Pg.1093]    [Pg.100]    [Pg.131]    [Pg.258]    [Pg.157]    [Pg.209]    [Pg.186]    [Pg.419]    [Pg.426]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Detection methods

© 2024 chempedia.info