Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecules, transport across

The partition coefficient is needed to determine the moles lost to the membrane, VM CM(t). If ionizable compounds are considered, then one must decide on the types of partition coefficient to use -Kp (true pH-independent partition coefficient) or Kd (pH-dependent apparent partition coefficient). If the permeability assay is based on the measurement of the total concentrations, Cn(t) and CA(t), summed over all charge-state forms of the molecule, and only the uncharged molecules transport across the membrane to an appreciable extent, it is necessary to consider the apparent partition (distribution) coefficient, Kd, in order to explain the pH dependence of permeability. [Pg.143]

Inside the inner membrane of a mitochondrion is a viscous region known as the matrix (Fig. 1-9). Enzymes of the tricarboxylic acid (TCA) cycle (also known as the citric acid cycle and the Krebs cycle), as well as others, are located there. For substrates to be catabolized by the TCA cycle, they must cross two membranes to pass from the cytosol to the inside of a mitochondrion. Often the slowest or rate-limiting step in the oxidation of such substrates is their entry into the mitochondrial matrix. Because the inner mitochondrial membrane is highly impermeable to most molecules, transport across the membrane using a carrier or transporter (Chapter 3, Section 3.4A) is generally invoked to explain how various substances get into the matrix. These carriers, situated in the inner membrane, might shuttle important substrates from the lumen between the outer and the inner mitochondrial membranes to the matrix. Because of the inner membrane, important ions and substrates in the mitochondrial matrix do not leak out. Such permeability barriers between various subcellular compartments improve the overall efficiency of a cell. [Pg.24]

Note that only pores with r > rs participate, because the hindrance factor is zero for r = rs (eq 11). The net number of molecules transported across the membrane is the time integral of Ns over the duration of the simulation and is a quantity that should be measurable for different experimental conditions, particularly different pulse magnitudes, durations, and shapes. The terms... [Pg.456]

In the nonsymbiotic condition, the general direction of membrane transport of neutral or weakly ionized molecules is inwards. In symbiosis, physical contact results in either the elimination of this tendency to inward movement or even a positive reversal of direction to produce an outflow from the cell. It is assumed also that in the nonsymbiotic condition the feature which determines the generally inward direction of molecule transport is the membrane potential which operates in a manner analagous to that proposed to explain ion transport (see Robertson, 1968). The maintenance of membrane potential by electron and/or proton flow is necessary for molecule transport across the membrane. [Pg.283]

Experimental investigations of the model system of dye molecules adsorbed onto surfaces of polystyrene spheres have finuly established the sensitivity and surface specificity of the SHG method even for particles of micrometre size [117]. The surface sensitivity of die SHG process has been exploited for probing molecular transport across the bilayer in liposomes [118], for measurement of electrostatic potentials at the surface of small particles [119] and for imaging... [Pg.1299]

For a gas in laminar flow over a condensed phase sample of length L, the mass transport across the boundary layer, in terms of the flux of molecules from the sample to die gas phase, is therefore... [Pg.104]

All of the transport systems examined thus far are relatively large proteins. Several small molecule toxins produced by microorganisms facilitate ion transport across membranes. Due to their relative simplicity, these molecules, the lonophore antibiotics, represent paradigms of the mobile carrier and pore or charmel models for membrane transport. Mobile carriers are molecules that form complexes with particular ions and diffuse freely across a lipid membrane (Figure 10.38). Pores or channels, on the other hand, adopt a fixed orientation in a membrane, creating a hole that permits the transmembrane movement of ions. These pores or channels may be formed from monomeric or (more often) multimeric structures in the membrane. [Pg.321]

As with Complex 1, passage of electrons through the Q cycle of Complex 111 is accompanied by proton transport across the inner mitochondrial membrane. The postulated pathway for electrons in this system is shown in Figure 21.12. A large pool of UQ and UQHg exists in the inner mitochondrial membrane. The Q cycle is initiated when a molecule of UQHg from this pool diffuses to a site (called Q, ) on Complex 111 near the cytosolic face of the membrane. [Pg.687]

As described above, the application of classical liquid- liquid extractions often results in extreme flow ratios. To avoid this, a completely symmetrical system has been developed at Akzo Nobel in the early 1990s [64, 65]. In this system, a supported liquid-membrane separates two miscible chiral liquids containing opposite chiral selectors (Fig. 5-13). When the two liquids flow countercurrently, any desired degree of separation can be achieved. As a result of the system being symmetrical, the racemic mixture to be separated must be added in the middle. Due to the fact that enantioselectivity usually is more pronounced in a nonaqueous environment, organic liquids are used as the chiral liquids and the membrane liquid is aqueous. In this case the chiral selector molecules are lipophilic in order to avoid transport across the liquid membrane. [Pg.141]

Alternatively, one interesting drug delivery technique exploits the active transport of certain naturally-occurring and relatively small biomacromolecules across the cellular membrane. For instance, the nuclear transcription activator protein (Tat) from HIV type 1 (HlV-1) is a 101-amino acid protein that must interact with a 59-base RNA stem-loop structure, called the traus-activation region (Tar) at the 5 end of all nascent HlV-1 mRNA molecules, in order for the vims to replicate. HIV-Tat is actively transported across the cell membrane, and localizes to the nucleus [28]. It has been found that the arginine-rich Tar-binding region of the Tat protein, residues 49-57 (Tat+9 57), is primarily responsible for this translocation activity [29]. [Pg.9]

For highly permeable molecules it is useful to consider the flux ionization constant, pfCa - , which refers to the pH value where the resistance to transport across a permeation barrier is 50% due to the ABL and 50% due to the membrane [21]. The approximate hyperboUc log-log equation (which is accurate when Pq is at least 10 times greater than Pabl)... [Pg.76]

In the transport across a phospholipid bilayer by passive diffusion, the permeability of the neutral form of a molecule is 10X times greater than that of the charged form. For the epithelium, the discrimination factor is 105. The basement membrane (Fig. 2.5) allows passage of uncharged molecules more readily than charged species by a factor of 10 [76]. [Pg.17]

An exciting area in inclusion chemistry is the design and synthesis of molecules which could behave as ion channels. Future developments in this field offer the potential for developing new synthetic antibiotic molecules, model systems for investigating transport across membranes, and ion channels specific for particular ions. Such studies are so far only in their infancy. [Pg.188]

While both paracellular and passive transcellular pathways are available to a solute, the relative contribution of each to the observed transport will depend on the properties of the solute and the membrane in question. Generally, polar membrane-impermeant molecules diffuse through the paracellular route, which is dominated by tight junctions (Section III.A). Exceptions include molecules that are actively transported across one or both membrane domains of a polarized cell (Fig. 2). The tight junction provides a rate-limiting barrier for many ions, small molecules, and macromolecules depending on the shape, size, and charge of the solute and the selectivity and dimensions of the pathway. [Pg.238]

Various diffusion coefficients have appeared in the polymer literature. The diffusion coefficient D that appears in Eq. (3) is termed the mutual diffusion coefficient in the mixture. By its very nature, it is a measure of the ability of the system to dissipate a concentration gradient rather than a measure of the intrinsic mobility of the diffusing molecules. In fact, it has been demonstrated that there is a bulk flow of the more slowly diffusing component during the diffusion process [4], The mutual diffusion coefficient thus includes the effect of this bulk flow. An intrinsic diffusion coefficient, Df, also has been defined in terms of the rate of transport across a section where no bulk flow occurs. It can be shown that these quantities are related to the mutual diffusion coefficient by... [Pg.460]


See other pages where Molecules, transport across is mentioned: [Pg.132]    [Pg.95]    [Pg.1655]    [Pg.132]    [Pg.95]    [Pg.1655]    [Pg.206]    [Pg.201]    [Pg.2]    [Pg.243]    [Pg.165]    [Pg.171]    [Pg.402]    [Pg.56]    [Pg.480]    [Pg.48]    [Pg.443]    [Pg.486]    [Pg.17]    [Pg.3]    [Pg.7]    [Pg.199]    [Pg.426]    [Pg.165]    [Pg.144]    [Pg.381]    [Pg.107]    [Pg.85]    [Pg.136]    [Pg.252]    [Pg.416]    [Pg.360]    [Pg.376]    [Pg.326]    [Pg.196]    [Pg.412]    [Pg.150]   


SEARCH



Molecules, transport across membranes

Transport molecules

Transport of large molecules across the bilayer

Transport of small molecules across the bilayer

© 2024 chempedia.info