Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane domains

PDE3 3A, 3B 1 for 3A 2 for 3B Transmembrane domains/ membrane targeting PKB, PKA cAMP > cGMP Milrinone... [Pg.964]

Af-terminal Von Willebrand factor D domains that are cysteine rich and facilitate intermolec-ular covalent cross-linking via disulfide bond formation. Apomucins are glycosylated as they traverse the Golgi apparatus and are localized exclusively at the apical cell surface by virtue of their transmembrane domain. Membrane associated mucins can also be secreted as a result of proteolytic processing of the cell surface protein or RNA splice variation that encodes the secreted protein. [Pg.2650]

Keywords cell signaling lipid rafts BAR domains membrane curvature membrane elasticity PIP2 diffusion mean-field model coarse-grained theory Poisson-Boltzmann theory Cahn-Hilliard equations... [Pg.238]

Anotlier teclmique used for stmctural inference is dielectric dispersion in tlie frequency [25] or time [26] domains. The biopolymer under investigation must have a pennanent dipole moment p. It is first dissolved in a dielectrically inert solvent, e.g. octanol, which may be considered to bear some resemblance to a biological lipid membrane, and tlien tlie complex impedance i +j( is measured over a range of frequencies / typically from a... [Pg.2819]

Fig. 1. The GP Ib-IX-V complex. The complex consists of seven transmembrane polypeptides denoted GP Iba (mol wt 145,000), GP IbP (mol wt 24,000), GPIX (mol wt 17,000) and GP V (mol wt 82,000), in a stoichiometry of 2 2 2 1. The hatched region represents the plasma membrane. The area above the hatched region represents the extracellular space that below represents the cytoplasm. The complex is a major attachment site between the plasma membrane and the cytoskeleton. Two molecules associated with the cytoplasmic domain are depicted a 14-3-3 dimer, which may mediate intracellular signaling, and actin-binding protein, which connects the complex to the cortical cytoskeleton and fixes its position and influences its function. Fig. 1. The GP Ib-IX-V complex. The complex consists of seven transmembrane polypeptides denoted GP Iba (mol wt 145,000), GP IbP (mol wt 24,000), GPIX (mol wt 17,000) and GP V (mol wt 82,000), in a stoichiometry of 2 2 2 1. The hatched region represents the plasma membrane. The area above the hatched region represents the extracellular space that below represents the cytoplasm. The complex is a major attachment site between the plasma membrane and the cytoskeleton. Two molecules associated with the cytoplasmic domain are depicted a 14-3-3 dimer, which may mediate intracellular signaling, and actin-binding protein, which connects the complex to the cortical cytoskeleton and fixes its position and influences its function.
The ANP leceptoi exists in two forms, ANP and ANPg, both of which have been cloned. These membrane-bound guanylate cyclases have a single transmembrane domain, an intracellular protein kinase-like domain, and a catalytic cyclase domain, activation of which results in the accumulation of cychc guanosine monophosphate (cGMP). A third receptor subtype (ANP ) has been identified that does not have intrinsic guanylate cyclase activity and may play a role in the clearance of ANP. [Pg.528]

In the suspension polymerization of PVC, droplets of monomer 30—150 p.m in diameter are dispersed in water by agitation. A thin membrane is formed at the water—monomer interface by dispersants such as poly(vinyl alcohol) or methyl cellulose. This membrane, isolated by dissolving the PVC in tetrahydrofuran and measured at 0.01—0.02-p.m thick, has been found to be a graft copolymer of polyvinyl chloride and poly(vinyl alcohol) (4,5). Early in the polymerization, particles of PVC deposit onto the membrane from both the monomer and the water sides, forming a skin 0.5—5-p.m thick that can be observed on grains sectioned after polymerization (4,6). Primary particles, 1 p.m in diameter, deposit onto the membrane from the monomer side (Pig. 1), whereas water-phase polymer, 0.1 p.m in diameter, deposits onto the skin from the water side of the membrane (Pig. 2) (4). These domain-sized water-phase particles may be one source of the observed domain stmcture (7). [Pg.495]

In this chapter we describe some examples of structures of membrane-bound proteins known to high resolution, and outline how the elucidation of these structures has contributed to understanding the specific function of these proteins, as well as some general principles for the construction of membrane-bound proteins. In Chapter 13 we describe some examples of the domain organization of receptor families and their associated proteins involved in signal transduction through the membrane. [Pg.224]

Figure 13.1 The basic organization of a membrane receptor molecule consists of an extracellular domain, a transmembrane region, and an intracellular domain. Figure 13.1 The basic organization of a membrane receptor molecule consists of an extracellular domain, a transmembrane region, and an intracellular domain.
The polypeptide chain of Src tyrosine kinase, and related family members, comprises an N-terminal "unique" region, which directs membrane association and other as yet unknown functions, followed by a SH3 domain, a SH2 domain, and the two lobes of the protein kinase. Members of this family can be phosphorylated at two important tyrosine residues—one in the "activation loop" of the kinase domain (Tyr 419 in c-Src), the other in a short... [Pg.275]

Figure 15.18 (a) Schematic representation of the path of the polypeptide chain in the structure of the class I MHC protein HLA-A2. Disulfide bonds are indicated as two connected spheres. The molecule is shown with the membrane proximal immunoglobulin-like domains (a3 and Pzm) at the bottom and the polymorphic al and a2 domains at the top. [Pg.313]


See other pages where Membrane domains is mentioned: [Pg.425]    [Pg.155]    [Pg.19]    [Pg.425]    [Pg.155]    [Pg.19]    [Pg.565]    [Pg.41]    [Pg.42]    [Pg.43]    [Pg.617]    [Pg.260]    [Pg.154]    [Pg.196]    [Pg.271]    [Pg.281]    [Pg.205]    [Pg.239]    [Pg.359]    [Pg.2328]    [Pg.520]    [Pg.301]    [Pg.467]    [Pg.62]    [Pg.86]    [Pg.100]    [Pg.223]    [Pg.251]    [Pg.252]    [Pg.252]    [Pg.253]    [Pg.266]    [Pg.268]    [Pg.271]    [Pg.272]    [Pg.273]    [Pg.279]    [Pg.285]    [Pg.313]    [Pg.314]    [Pg.317]   
See also in sourсe #XX -- [ Pg.5 , Pg.42 , Pg.100 ]




SEARCH



© 2024 chempedia.info