Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure definition

Small molecule semiconductors for bulk heterojunction organic solar cells are attractive because of their advantages over their polymer counterparts, which include well-defined molecular structure, definite molecular weight, and high purity without batch-to-batch variations. [Pg.113]

The most well-known and at the same time the earliest computer model for a molecular structure representation is a wire frame model (Figure 2-123a). This model is also known under other names such as line model or Drciding model [199]. It shows the individual bonds and the angles formed between these bonds. The bonds of a molecule are represented by colored vector lines and the color is derived from the atom type definition. This simple method does not display atoms, but atom positions can be derived from the end and branching points of the wire frame model. In addition, the bond orders between two atoms can be expressed by the number of lines. [Pg.132]

Chemistry in three dimensions is known as stereochemistry At its most fundamental level stereochemistry deals with molecular structure at another level it is concerned with chemical reactivity Table 7 2 summarizes some basic definitions relating to molec ular structure and stereochemistry... [Pg.315]

It has been pointed out321-324 that the two groups of solvents differ by some definite structural features. In particular, ED, 1,2-BD, and 1,3-BD possess vicinal OH groups that can form intramolecular hydrogen bonds. For these solvents, the ability of the organic molecule to interact with neighboring molecules is reduced. This results in the possibility of a different orientation at the interface because of different interactions of the OH groups with the Hg surface.323 The different molecular structure leads to different dipolar cooperative effects. As a result, the dependence of C on the bulk permittivity follows two different linear dependencies. [Pg.60]

These pharmacophore techniques are different in format from the traditional pharmacophore definitions. They can not be easily visualized and mapped to the molecular structures rather, they are encoded as keys or topological/topographical descriptors. Nonetheless, they capture the same idea as the classic pharmacophore concept. Furthermore, this formalism is quite useful in building quantitative predictive models that can be used to classify and predict biological activities. [Pg.311]

Sweetness is a quality that defies definition, but whose complexity can be appreciated merely by examining the molecular structures of those compounds that elicit the sensation. They come in all molecular shapes and sizes, and they belong to such seemingly unrelated classes of compounds as aliphatic and aromatic organic compounds, amino acids, peptides and proteins, carbohydrates, complex glycosides, and even certain inorganic salts. [Pg.200]

When this procedure is applied to the data shown for polystyrene in Fig. 116 and to those for polyisobutylene shown previously in Fig. 38 of Chapter VII, the values obtained for t/ i(1 — /T) decrease as the molecular weight increases. The data for the latter system, for example, yield values for this quantity changing from 0.087 at AT-38,000 to 0.064 at ilf = 720,000. This is contrary to the initial definition of the thermodynamic parameters, according to which they should characterize the inherent segment-solvent interaction independent of the molecular structure as a whole. [Pg.537]

Homogeneous catalysts are very often known as examples of single-site catalysts characterized by complete structural definition and (presumably) complete knowledge of the chemical processes occurring at their catalytic centers. It is a matter of fact that the homogeneous catalysts are molecular complexes constituted by an active core containing a single active atom (of-... [Pg.38]

This article is an attempt at evaluating new important features of tin(II) chemistry the central point is the interrelationship between molecular structure and reactivity of molecular tin(II) compounds. To define these compounds more closely, only those are discussed which are stable, monomeric in solvents and which may be classified as carbene analogs21. Thus, not a complete survey of tin(II) chemistry is given but stress is laid on the structures and reactions of selected compounds. A general introduction to the subject precedes the main chapters. For comparison, also solid-state tin(II) chemistry is included to demonstrate the great resemblance with molecular tin(II) chemistry. Tin(II) compounds, which are either generated as intermediates or only under definite conditions such as temperature or pressure, are not described in detail. [Pg.8]

As can be seen from Table 1, not only the spectral data are quite different between pairs of compounds, but also the paramagnetism is decreasing when the carbon atom attached to the nitrogen is replaced by silicon, all other atoms being equal. As we have not been able to determine the molecular structures of the compounds until now, we cannot ascribe the change in properties to a definite change in structure. Nevertheless it seems obvious that the carbon or silicon atom in 6-position to the metal must have an important impact on the orbital-splitting at the transition element. [Pg.218]

Operational definitions of molecular structure are needed to clarify experimental significance. In addition, some statistical notation is needed to clarify physical meaning. All statistical definitions hinge on the minimum of potential energy in a bound electronic state, which defines the equilibrium geometry or r,-intemuclear distance type. [Pg.139]

Lanthanide ions offer several salient properties that make them especially attractive as qubit candidates (i) their magnetic states provide proper definitions of the qubit basis (ii) they show reasonably long coherence times (iii) important qubit parameters, such as the energy gap AE and the Rabi frequency 2R, can be chemically tuned by the design of the lanthanide co-ordination shell and (iv) the same molecular structure can be realized with many different lanthanide ions (e.g. with or without nuclear spin), thus providing further versatility for the design of spin qubits or hybrid spin registers. [Pg.215]

The chemical world is often divided into measurers and makers of molecules. This division has deep historic roots, but it artificially impedes taking advantage of both aspects of the chemical sciences. Of key importance to all forms of chemistry are instruments and techniques that allow examination, in space and in time, of the composition and characterization of a chemical system under study. To achieve this end in a practical manner, these instruments will need to multiplex several analytical methods. They will need to meet one or more of the requirements for characterization of the products of combinatorial chemical synthesis, correlation of molecular structure with dynamic processes, high-resolution definition of three-dimensional structures and the dynamics of then-formation, and remote detection and telemetry. [Pg.69]

Crystal data and parameters of the data collection (at -173°, 50 < 20 < 450) are shown in Table I. A data set collected on a parallelopiped of dimensions 0.09 x 0.18 x 0.55 mm yielded the molecular structure with little difficulty using direct methods and Fourier techniques. Full matrix refinement using isotropic thermal parameters converged to R = 0.I7. Attempts to use anisotropic thermal parameters, both with and without an absorption correction, yielded non-positive-definite thermal parameters for over half of the atoms and the residual remained at ca. 0.15. [Pg.44]

Perturbative reasoning can be used to justify conceptual models of chemistry that are far from evident in Eq. (1.1) itself. An important example is the concept of molecular structure - the notion that nuclei assume a definite equilibrium configuration R0, which determines the spatial shape and symmetry of the molecule. At first glance, this concept appears to have no intrinsic meaning in Eq. (El),... [Pg.5]

These definitions apply to any atomic system, molecule or crystal. Fig. 7.3 a illustrates their application to the charge distribution of the guanine-cytosine base-pair. Fig. 7.3 b shows the molecular structure defined by the bond paths and the associated CPs that clearly and uniquely define the three hydrogen bonds that link the two bases. Fig. 7.3 c shows the atomic boundaries and bond paths overlaid on the electron density in the plane of the nuclei. All properties of the atoms can be determined, enabling one, for example, to determine separately the energy of formation of each of the three hydrogen bonds. [Pg.206]

Finally, it is worth mentioning that alignment-free methods for evaluating molecular similarity have been tested [45]. Recently, the question about the necessary positive definite nature the MQSM matrices must possess has been put forward and a building up algorithm for a set of molecular structures has been described [53]. [Pg.237]

Although, the true density of solid phase p=m/Vp (e.g., g/cm3) is defined by an atomic-molecular structure (/ ), it has become fundamental to the definition of many texture parameters. In the case of porous solids, the volume of solid phase Vp is equal to the volume of all nonporous components (particles, fibers, etc.) of a PS. That is, Vp excludes all pores that may be present in the particles and the interparticular space. The PS shown in Figure 9.17a is formed from nonporous particles that form porous aggregates, which, in turn, form a macroscopic granule of a catalyst. In this case, the volume Vp is equal to the total volume of all nonporous primary particles, and the free volume between and inside the aggregates (secondary particles) is not included. [Pg.283]

Since rigorous theoretical treatments of molecular structure have become more and more common in recent years, there exists a definite need for simple connections between such treatments and traditional chemical concepts. One approach to this problem which has proved useful is the method of localized orbitals. It yields a clear picture of a molecule in terms of bonds and lone pairs and is particularly well suited for comparing the electronic structures of different molecules. So far, it has been applied mainly within the closed-shell Hartree-Fock approximation, but it is our feeling that, in the future, localized representations will find more and more widespread use, including applications to wavefunctions other than the closed-shell Hartree-Fock functions. [Pg.33]


See other pages where Molecular structure definition is mentioned: [Pg.86]    [Pg.86]    [Pg.171]    [Pg.79]    [Pg.37]    [Pg.51]    [Pg.676]    [Pg.165]    [Pg.958]    [Pg.10]    [Pg.42]    [Pg.39]    [Pg.375]    [Pg.315]    [Pg.139]    [Pg.291]    [Pg.285]    [Pg.145]    [Pg.83]    [Pg.363]    [Pg.93]    [Pg.203]    [Pg.209]    [Pg.291]    [Pg.490]    [Pg.224]    [Pg.145]    [Pg.148]    [Pg.165]    [Pg.332]    [Pg.1]   


SEARCH



Molecularity, definition

Structural definition

Structuring definition

© 2024 chempedia.info