Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure approach

The stereochemistry of reactions has to be handled in any detailed modeling of chemical reactions. Section 2.7 showed how permutation group theory can be used to represent the stereochemistry of molecular structures. We will now extend this approach to handle the stereochemistry of reactions also [31]. [Pg.197]

Many problems in force field investigations arise from the calculation of Coulomb interactions with fixed charges, thereby neglecting possible mutual polarization. With that obvious drawback in mind, Ulrich Sternberg developed the COSMOS (Computer Simulation of Molecular Structures) force field [30], which extends a classical molecular mechanics force field by serai-empirical charge calculation based on bond polarization theory [31, 32]. This approach has the advantage that the atomic charges depend on the three-dimensional structure of the molecule. Parts of the functional form of COSMOS were taken from the PIMM force field of Lindner et al., which combines self-consistent field theory for r-orbitals ( nr-SCF) with molecular mechanics [33, 34]. [Pg.351]

A challenging task in material science as well as in pharmaceutical research is to custom tailor a compound s properties. George S. Hammond stated that the most fundamental and lasting objective of synthesis is not production of new compounds, but production of properties (Norris Award Lecture, 1968). The molecular structure of an organic or inorganic compound determines its properties. Nevertheless, methods for the direct prediction of a compound s properties based on its molecular structure are usually not available (Figure 8-1). Therefore, the establishment of Quantitative Structure-Property Relationships (QSPRs) and Quantitative Structure-Activity Relationships (QSARs) uses an indirect approach in order to tackle this problem. In the first step, numerical descriptors encoding information about the molecular structure are calculated for a set of compounds. Secondly, statistical and artificial neural network models are used to predict the property or activity of interest based on these descriptors or a suitable subset. [Pg.401]

The basic approach to the problem of estimating properties can be written in a very simple form that states that a molecular property P can be expressed as a function of the molecular structure C (Eq. (1)). [Pg.487]

An extensive series of studies for the prediction of aqueous solubility has been reported in the literature, as summarized by Lipinski et al. [15] and jorgensen and Duffy [16]. These methods can be categorized into three types 1 correlation of solubility with experimentally determined physicochemical properties such as melting point and molecular volume 2) estimation of solubility by group contribution methods and 3) correlation of solubility with descriptors derived from the molecular structure by computational methods. The third approach has been proven to be particularly successful for the prediction of solubility because it does not need experimental descriptors and can therefore be applied to collections of virtual compounds also. [Pg.495]

Several research groups have built models using theoretical desaiptors calculated only from the molecular structure. This approach has been proven to be particularly successful for the prediction of solubility without the need for descriptors of experimental data. Thus, it is also suitable for virtual data screening and library design. The descriptors include 2D (two-dimensional, or topological) descriptors, and 3D (three-dimensional, or geometric) descriptors, as well as electronic descriptors. [Pg.497]

A series of monographs and correlation tables exist for the interpretation of vibrational spectra [52-55]. However, the relationship of frequency characteristics and structural features is rather complicated and the number of known correlations between IR spectra and structures is very large. In many cases, it is almost impossible to analyze a molecular structure without the aid of computational techniques. Existing approaches are mainly based on the interpretation of vibrational spectra by mathematical models, rule sets, and decision trees or fuzzy logic approaches. [Pg.529]

R. F. Hout, Jr., W. J. Pietro, W. J. Hehre, A Pictorial Approach to Molecular Structure and Reactivity John Wiley Sons, New York (1984). [Pg.123]

CWG van Gelder, EJJ Leusen, JAM Leunissen, JH Noordik. A molecular dynamics approach for the generation of complete protein structures from limited coordinate data. Proteins 18 174-185, 1994. [Pg.304]

It should be noted that a comprehensive ELNES study is possible only by comparing experimentally observed structures with those calculated [2.210-2.212]. This is an extra field of investigation and different procedures based on molecular orbital approaches [2.214—2.216], multiple-scattering theory [2.217, 2.218], or band structure calculations [2.219, 2.220] can be used to compute the densities of electronic states in the valence and conduction bands. [Pg.63]

Another broad approach to the description of molecular structure that is of importance in organic chemistry is molecular orbital theory. Molecular orbital (MO) theory pictures electrons as being distributed among a set of molecular orbitals of discrete... [Pg.23]

The standard free energy can be divided up in two ways to explain the mechanism of retention. First, the portions of free energy can be allotted to specific types of molecular interaction that can occur between the solute molecules and the two phases. This approach will be considered later after the subject of molecular interactions has been discussed. The second requires that the molecule is divided into different parts and each part allotted a portion of the standard free energy. With this approach, the contributions made by different parts of the solvent molecule to retention can often be explained. This concept was suggested by Martin [4] many years ago, and can be used to relate molecular structure to solute retention. Initially, it is necessary to choose a molecular group that would be fairly ubiquitous and that could be used as the first building block to develop the correlation. The methylene group (CH2) is the... [Pg.54]

To go from experimental observations of solvent effects to an understanding of them requires a conceptual basis that, in one approach, is provided by physical models such as theories of molecular structure or of the liquid state. As a very simple example consider the electrostatic potential energy of a system consisting of two ions of charges Za and Zb in a medium of dielectric constant e. [Pg.387]

The molecular and bulk properties of the halogens, as distinct from their atomic and nuclear properties, were summarized in Table 17.4 and have to some extent already been briefly discussed. The high volatility and relatively low enthalpy of vaporization reflect the diatomic molecular structure of these elements. In the solid state the molecules align to give a layer lattice p2 has two modifications (a low-temperature, a-form and a higher-temperature, yS-form) neither of which resembles the orthorhombic layer lattice of the isostructural CI2, Br2 and I2. The layer lattice is illustrated below for I2 the I-I distance of 271.5 pm is appreciably longer than in gaseous I2 (266.6 pm) and the closest interatomic approach between the molecules is 350 pm within the layer and 427 pm between layers (cf the van der Waals radius of 215 pm). These values are... [Pg.803]

A. R. Leach, Molecular Modelling. Principles and Applications, Longman, 1996 A. Hinchcliffe Modelling Molecular Structure, Wiley, 1996 D. M. Hirst, A Computational Approach to Chemistry, Blackwell, 1990 T. Clark, A Handbook of Computational Chemistry, Wiley, 1985. [Pg.5]

The purpose of this study is only intended to illustrate and evaluate the decision tree approach for CSP prediction using as attributes the 166 molecular keys publicly available in ISIS. This assay was carried out a CHIRBASE file of 3000 molecular structures corresponding to a list of samples resolved with an a value superior to 1.8. For each solute, we have picked in CHIRBASE the traded CSP providing the highest enantioselectivity. This procedure leads to a total selection of 18 CSPs commercially available under the following names Chiralpak AD [28], Chiral-AGP [40], Chiralpak AS [28], Resolvosil BSA-7 [41], Chiral-CBH [40], CTA-I (microcrystalline cellulose triacetate) [42], Chirobiotic T [43], Crownpak CR(-i-) [28], Cyclobond I [43], DNB-Leucine covalent [29], DNB-Phenylglycine covalent [29], Chiralcel OB [28], Chiralcel OD [28], Chiralcel OJ [28], Chiralpak OT(-i-) [28], Ultron-ES-OVM [44], Whelk-0 1 [29], (/ ,/ )-(3-Gem 1 [29]. [Pg.120]

The description of electronic distribution and molecular structure requires quantum mechanics, for which there is no substitute. Solution of the time-independent Schrodinger equation, Hip = Eip, is a prerequisite for the description of the electronic distribution within a molecule or ion. In modern computational chemistry, there are numerous approaches that lend themselves to a reasonable description of ionic liquids. An outline of these approaches is given in Scheme 4.2-1 [1] ... [Pg.152]

Poly(p-pheny lene)s, PPPs, constitute the prototype of rigid-rod polymers and are currently being intensively investigated [1]. The key role of PPPs follows from their conceptually simple and appealing molecular structure, from their chemical stability, and from their superior physical properties [2], In turn, this is the result of important advances made in aromatic chemistry over the last few years. The following section gives an overview of the most common methods to generate poly(p-phenylene)s via different synthetic approaches. [Pg.32]

For applications having only moderate thermal requirements, thermal decomposition may not be an important consideration. However, if the product requires dimensional stability at high temperatures, it is possible that its service temperature or processing temperature may approach its temperature of decomposition (Tj) (Table 7-12). A plastic s decomposition temperature is largely determined by the elements and their bonding within the molecular structures as well as the characteristics of additives, fillers, and reinforcements that may be in them. [Pg.399]

Neutral Loss Only a limited number of neutral fragments of low mass which are eliminated in decompositions of molecular ions. Examples are H, H2, CH3 and OH. Therefore, the presence of a major ion below the molecular ion at an improbable interval (eg, loss of 4 to 14, 21 to 25 amu) will indicate that the latter is not the molecular ion Postulation of Molecular Structures The. postulation of the structure of an unknown molecule is based on several major kinds of general structural information available in the mass spectmm. McLafferty (Ref 63) suggests the following systematic approach ... [Pg.50]

Ring-opening polymerization has played an important role in systematic approaches to the chemical synthesis of polysaccharides and the clarification of their biomedically interesting characteristics in relation to their own molecular structures. The early... [Pg.48]

The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper we review recent work in our laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper we review a more analytical approach we have developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations. [Pg.82]


See other pages where Molecular structure approach is mentioned: [Pg.464]    [Pg.194]    [Pg.464]    [Pg.194]    [Pg.163]    [Pg.434]    [Pg.124]    [Pg.529]    [Pg.535]    [Pg.144]    [Pg.670]    [Pg.73]    [Pg.7]    [Pg.351]    [Pg.299]    [Pg.2]    [Pg.28]    [Pg.302]    [Pg.267]    [Pg.181]    [Pg.691]    [Pg.294]    [Pg.264]    [Pg.287]    [Pg.207]    [Pg.201]    [Pg.72]    [Pg.14]   


SEARCH



Approaches to Molecular Structure

Edge structures molecular-orbital approach

Molecular approach

Molecular structure approach chemistry physics

Molecular structure semi-empirical approach

Molecular structures statistical mechanical approach

Structural approach

Structure-based molecular design approaches

Transferring molecular structure data various approaches

© 2024 chempedia.info