Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fixed charges

The carriers in tire channel of an enhancement mode device exhibit unusually high mobility, particularly at low temperatures, a subject of considerable interest. The source-drain current is carried by electrons attracted to tire interface. The ionized dopant atoms, which act as fixed charges and limit tire carriers mobility, are left behind, away from tire interface. In a sense, tire source-drain current is carried by tire two-dimensional (2D) electron gas at tire Si-gate oxide interface. [Pg.2892]

Many problems in force field investigations arise from the calculation of Coulomb interactions with fixed charges, thereby neglecting possible mutual polarization. With that obvious drawback in mind, Ulrich Sternberg developed the COSMOS (Computer Simulation of Molecular Structures) force field [30], which extends a classical molecular mechanics force field by serai-empirical charge calculation based on bond polarization theory [31, 32]. This approach has the advantage that the atomic charges depend on the three-dimensional structure of the molecule. Parts of the functional form of COSMOS were taken from the PIMM force field of Lindner et al., which combines self-consistent field theory for r-orbitals ( nr-SCF) with molecular mechanics [33, 34]. [Pg.351]

The explicit definition of water molecules seems to be the best way to represent the bulk properties of the solvent correctly. If only a thin layer of explicitly defined solvent molecules is used (due to hmited computational resources), difficulties may rise to reproduce the bulk behavior of water, especially near the border with the vacuum. Even with the definition of a full solvent environment the results depend on the model used for this purpose. In the relative simple case of TIP3P and SPC, which are widely and successfully used, the atoms of the water molecule have fixed charges and fixed relative orientation. Even without internal motions and the charge polarization ability, TIP3P reproduces the bulk properties of water quite well. For a further discussion of other available solvent models, readers are referred to Chapter VII, Section 1.3.2 of the Handbook. Unfortunately, the more sophisticated the water models are (to reproduce the physical properties and thermodynamics of this outstanding solvent correctly), the more impractical they are for being used within molecular dynamics simulations. [Pg.366]

Ion-exchange methods are based essentially on a reversible exchange of ions between an external liquid phase and an ionic solid phase. The solid phase consists of a polymeric matrix, insoluble, but permeable, which contains fixed charge groups and mobile counter ions of opposite charge. These counter ions can be exchanged for other ions in the external liquid phase. Enrichment of one or several of the components is obtained if selective exchange forces are operative. The method is limited to substances at least partially in ionized form. [Pg.1109]

Modification of the membranes affects the properties. Cross-linking improves mechanical properties and chemical resistivity. Fixed-charge membranes are formed by incorporating polyelectrolytes into polymer solution and cross-linking after the membrane is precipitated (6), or by substituting ionic species onto the polymer chain (eg, sulfonation). Polymer grafting alters surface properties (7). Enzymes are added to react with permeable species (8—11) and reduce fouling (12,13). [Pg.294]

The ion transport number is defined as the fraction of current carried through the membrane by counterions. If the concentration of fixed charges in the membrane is high compared to the concentration of the ambient solution, then the mobile ions in the IX membrane are mosdy counterions, co-ions are effectively excluded, and the ion transport number then approaches 1. Commercial membranes have ion transport numbers in dilute solutions of ca 0.85—0.95. The relationship between ion transport number and current efficiency is shown in Figure 3 where is the fraction of current carried by the counterions (anions) through the AX membrane and is the fraction of current carried by the counterions (cations) through the CX membrane. The remainder of the current (1 — in the case of the AX membranes and (1 — in the case of the CX membranes is carried by co-ions and... [Pg.173]

Seawater Evaporators The production of potable water from saline waters represents a large and growing field of application for evaporators. Extensive work done in this field to 1972 was summarized in the annual Saline Water Conversion Repoi ts of the Office of Sahne Water, U.S. Department of the Interior. Steam economies on the order of 10 kg evaporation/kg steam are usually justified because (1) unit production capacities are high, (2) fixed charges are low on capital used for pubhc works (i.e., they use long amortization periods and have low interest rates, with no other return on investment considered), (3) heat-transfer performance is comparable with that of pure water, and (4) properly treated seawater causes httle deterioration due to scahng or fouhng. [Pg.1144]

Sulfur The riug-roUer mill can be used for the fine grinding of sulfur. Inert gases are supplied instead of hot air (see Properties of Sohds Safety for use of inert gas). Performance of a Raymond No. 5057 ring-roller mill is given in Table 20-34. The total cost might be 3 to 4 times the power cost and include labor, inert gas, maintenance, and fixed charges. [Pg.1873]

The effect of physical processes on reactor performance is more complex than for two-phase systems because both gas-liquid and liquid-solid interphase transport effects may be coupled with the intrinsic rate. The most common types of three-phase reactors are the slurry and trickle-bed reactors. These have found wide applications in the petroleum industry. A slurry reactor is a multi-phase flow reactor in which the reactant gas is bubbled through a solution containing solid catalyst particles. The reactor may operate continuously as a steady flow system with respect to both gas and liquid phases. Alternatively, a fixed charge of liquid is initially added to the stirred vessel, and the gas is continuously added such that the reactor is batch with respect to the liquid phase. This method is used in some hydrogenation reactions such as hydrogenation of oils in a slurry of nickel catalyst particles. Figure 4-15 shows a slurry-type reactor used for polymerization of ethylene in a sluiTy of solid catalyst particles in a solvent of cyclohexane. [Pg.240]

Issue of debentures. These will normally carry a fixed rate of interest and have a predetermined date of redemption, possibly at a premium. The holders of debentures will usually require security perhaps by means of a fixed charge over specific assets (or all the assets), and will have a right of prior payment in the event of a liquidation. Debenture holders can also sometimes exercise their rights on the occurrence of certain events. Widespread security given to one class of lender can militate against the provision of shortterm finance from other lenders who require collateral. [Pg.1038]

Let us return now to the sphere of Sec. 98, bearing a fixed charge q and immersed in one solvent or another. We know from (19) that the... [Pg.265]

The swelling behavior of hydrogels in solutions of multivalent ions capable to associate with the network-fixed charges, e.g., Cu2+, substantially differs from that described above, viz. the collapse of gels takes place [107]. As a result of this... [Pg.113]

These examples show once again that the network-fixed charges play an important role in the swelling behavior of hydrogels. [Pg.114]

A question of practical interest is the amount of electrolyte adsorbed into nanostructures and how this depends on various surface and solution parameters. The equilibrium concentration of ions inside porous structures will affect the applications, such as ion exchange resins and membranes, containment of nuclear wastes [67], and battery materials [68]. Experimental studies of electrosorption studies on a single planar electrode were reported [69]. Studies on porous structures are difficult, since most structures are ill defined with a wide distribution of pore sizes and surface charges. Only rough estimates of the average number of fixed charges and pore sizes were reported [70-73]. Molecular simulations of nonelectrolyte adsorption into nanopores were widely reported [58]. The confinement effect can lead to abnormalities of lowered critical points and compressed two-phase envelope [74]. [Pg.632]

Fic. 136.—Diagram of swollen ionic gel in equilibrium with electrolyte solution. Fixed charges are represented by [T. ... [Pg.585]


See other pages where Fixed charges is mentioned: [Pg.179]    [Pg.184]    [Pg.237]    [Pg.590]    [Pg.363]    [Pg.363]    [Pg.364]    [Pg.81]    [Pg.252]    [Pg.448]    [Pg.173]    [Pg.230]    [Pg.2029]    [Pg.2030]    [Pg.2030]    [Pg.2032]    [Pg.98]    [Pg.396]    [Pg.54]    [Pg.56]    [Pg.162]    [Pg.355]    [Pg.159]    [Pg.1194]    [Pg.210]    [Pg.646]    [Pg.12]    [Pg.224]    [Pg.625]    [Pg.632]    [Pg.634]    [Pg.642]    [Pg.101]    [Pg.585]    [Pg.585]   
See also in sourсe #XX -- [ Pg.2 , Pg.5 , Pg.38 , Pg.60 , Pg.162 ]

See also in sourсe #XX -- [ Pg.84 ]

See also in sourсe #XX -- [ Pg.137 , Pg.150 , Pg.165 , Pg.166 , Pg.168 ]




SEARCH



© 2024 chempedia.info