Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular sieving zeolite membranes

All these aspects were thoroughly discussed by lecturers and participants during the round table organized during the Poitiers School on The Future Trends in Zeolite Applications . Special emphasis was placed on the role played by the sites at the external surface (pockets, etc.) or at the pore mouth, by mesopores, extraframework aluminum species, as well as by the polarity of reactant and product molecules. Other important topics dealt with the remarkable catalytic properties of BEA zeolites for fine chemical synthesis, the potential of mesoporous molecular sieves, zeolitic membranes and the role of combinatorial catalysis in the development of zeolite catalysts. It is our hope that the fruits of these discussions will appear in the literature or even better as new and environmentally friendly products or processes. [Pg.23]

RO membranes including polymeric (PA-TFC membrane) and molecular sieve zeolite membranes were investigated for ion removal from the water produced at oil field and coal bed methane sites by a cross-flow RO process [78]. Pretreatments including NF and adsorption by active carbon were implemented. The study revealed that (1) most of permeation tests lasted only 3 months due to severe fouling, (2) multistage pretreatment is crucial to extend membrane life, and (3) only NF treatment could extend the membrane life to 6 months. [Pg.47]

With appropriate membrane pore size and a narrow distribution, membrane selectivity for smaller gas molecules can be high but the overall permeability is generally low due to a high flow resistance in fine pores. Several studies are being conducted to develop molecular sieve-type membranes using different inorganic materials, for example, those based on carbon (Liu, 2007), silica (Pex and van Delft, 2005), and zeolites (Lin, 2007). [Pg.309]

Molecular sieve dryers, 10 613 Molecular-sieve effects, 16 821 Molecular sieve membranes, 15 813t Molecular sieve products commercial, 16 838-839t manufacturing processes for, 16 831 Molecular sieves, 16 811-853. See also Carbon molecular sieves Zeolite entries... [Pg.596]

Among the many classes of microreactor which have been used in organic phototransformation, we will limit our discussion only on molecular-sieve zeolites, Nafion membranes, vesicles, and low-density polyethylene films. [Pg.318]

There is a great need for robust, defect-free, highly selective molecular sieve (zeolite) thin film membranes for light gas molecule separations in hydrogen fuel production from CH4 or H2O sources. They contain an inherent chemical, thermal and mechanical stability not found in conventional membrane materials. Our goal is to utilize those zeolitic qualities in membranes for the separation of light gases, and to eventually partner with industry to commercialize the membranes. To date, we have successfully ... [Pg.118]

Zeolite Membrane Reactors - The need for highly permselective membranes, which are stable to high temperatures and resist chemical attack, has led to great interest in microporous materials, especially molecular sieve zeolites. Although a great deal of work is currently underway to develop zeolite membranes, few studies of zeolite membrane reactors are available. This reflects... [Pg.78]

The more permeable component is called the. st ga.s, so it is the one enriched in the permeate stream. Permeability through polymers is the product of solubihty and diffusivity. The diffusivity of a gas in a membrane is inversely proportional to its kinetic diameter, a value determined from zeolite cage exclusion data (see Table 22-23 after Breck, Zeolite Molecular Sieves, Wiley, NY, 1974, p. 636). [Pg.2047]

The separation factors are relatively low and consequently the MR is not able to approach full conversion. With a molecular sieve silica (MSS) or a supported palladium film membrane, an (almost) absolute separation can be obtained (Table 10.1). The MSS membranes however, suffer from a flux/selectivity trade-off meaning that a high separation factor is combined with a relative low flux. Pd membranes do not suffer from this trade-off and can combine an absolute separation factor with very high fluxes. A favorable aspect for zeoHte membranes is their thermal and chemical stability. Pd membranes can become unstable due to impurities like CO, H2S, and carbonaceous deposits, and for the MSS membrane, hydrothermal stability is a major concern [62]. But the performance of the currently used zeolite membranes is insufficient to compete with other inorganic membranes, as was also concluded by Caro et al. [63] for the use of zeolite membranes for hydrogen purification. [Pg.222]

Separation of isomers is an application where zeolite membranes could be specifically interesting because of their well-defined pores that lead to molecular sieving effects. An application that is often considered is the xylene isomerization and related reactions. [Pg.224]

Three different ways in which a zeolite membrane can contribute to a better sensor performance can be distinguished (i) the add-on selective adsorption or molecular sieving layer to the sensor improves selectivity and sensitivity, (ii) the zeolite layer acts as active sensing material and adds the selective adsorption and molecular sieving properties to this, and (iii) the zeohte membrane adds a catalytically active layer to the sensor, improving the selectivity by specific reactions. [Pg.227]

An important driver for zeolite membrane apphcations has been the commercialization of the NaA membranes for dehydration. However, for these membranes, the quality required is not as high as compared to gas-phase molecular sieving... [Pg.230]

Molecular sieving effect of the membrane has been evidenced using a mixture of two isomers (i.e. no Knudsen separation can be anticipated), n-hexane and 2-2 dimethylbutane (respective kinetic diameters 0.43 and 0.62 nm). Figure 10 shows the permeate contains almost only the linear species, due to the sieving effect of the zeolite membrane (pore size ca 0.55 nm). This last result also underlines that the present zeolite membrane is almost defect-fi ee. [Pg.135]

Membranes with extremely small pores ( < 2.5 nm diameter) can be made by pyrolysis of polymeric precursors or by modification methods listed above. Molecular sieve carbon or silica membranes with pore diameters of 1 nm have been made by controlled pyrolysis of certain thermoset polymers (e.g. Koresh, Jacob and Soffer 1983) or silicone rubbers (Lee and Khang 1986), respectively. There is, however, very little information in the published literature. Molecular sieve dimensions can also be obtained by modifying the pore system of an already formed membrane structure. It has been claimed that zeolitic membranes can be prepared by reaction of alumina membranes with silica and alkali followed by hydrothermal treatment (Suzuki 1987). Very small pores are also obtained by hydrolysis of organometallic silicium compounds in alumina membranes followed by heat treatment (Uhlhom, Keizer and Burggraaf 1989). Finally, oxides or metals can be precipitated or adsorbed from solutions or by gas phase deposition within the pores of an already formed membrane to modify the chemical nature of the membrane or to decrease the effective pore size. In the last case a high concentration of the precipitated material in the pore system is necessary. The above-mentioned methods have been reported very recently (1987-1989) and the results are not yet substantiated very well. [Pg.18]

Molecular sieves are porous aluminosilicates (zeolites) or carbon solids that contain pores of molecular dimensions which can exhibit seleaivity according to the size of the gas molecule. The most extensive study on carbon molecular sieve membranes is the one by Koresh and Soffer (1980,1987). Bird and Trimm (1983) also described the performance of carbon molecular sieve membranes, but they were unable to prepare a continuous membrane. Koresh and Soffer (1980) prepared hollow-fiber carbon molecular sieves, with pores dimensions between 0.3 and 2.0 run radius (see Chapter 2). [Pg.107]

Microwave Synthesis of Zeolites and Molecular Sieves The use of microwaves holds promise for efficiency improvements in zeolite synthesis due to the rapid heating possible when using microwave radiation [166], The first report of microwave synthesis of zeolites was by Mobil Oil in 1988, which broadly claimed the synthesis of zeolite materials in the presence of a microwave-sympathetic material, such as water or other pro tic component [167]. A number of reports have appeared since, including synthesis of zeolites Y, ZSM-5 [168] and metaUoaluminophosphate-type materials, such as MAPO-5 [169], There have also been extensive investigations in using microwaves for zeoHte membrane synthesis. Recent reviews discuss the progress in microwave zeoHte synthesis [170, 171]. [Pg.77]

For multi-component systems it seems intuitive that single-component diffusion and adsorption data would enable one to predict which component would be selectively passed through a membrane. This is only the case where molecular sieving is observed for all other separations where the molecules interact with one another and with the zeolite framework their behavior is determined by these interactions. Differences in membrane properties such as quahty, microstructure, composition and modification can also play a large role in the observed separation characteristics. In many cases, these properties can be manipulated in order to tailor a membrane for a specific apphcation or separation. [Pg.318]

Membranes made from zeolite materials provide separahon properties mainly based on molecular sieving and/or surface diffusion mechanism. Separation with large pore zeolite membranes is mainly based on surface diffusion when their pore sizes are much larger than the molecules to be separated. Separation with small pore zeolite membranes is mainly based on molecular sieving when the pore sizes are smaller or similar to one molecule but are larger than other molecules in a mixture to be separated. [Pg.332]

Some small-pore zeolite and molecular sieve membranes, such as zeolite T (0.41 nm pore diameter), DDR (0.36 x 0.44nm) and SAPO-34 (0.38nm), have been prepared recenhy [15-21]. These membranes possess pores that are similar in size to CH4 but larger than CO2 and have high CO2/CH4 selechvihes due to a molecular sieving mechanism. For example, a DDR-type zeolite membrane shows much higher CO2 permeability and CO2/CH4 selechvity compared to polymer membranes [15-17]. SAPO-34 molecular sieve membranes show improved selechvity for separation of certain gas mixtures, including mixtures of CO2 and CH4 [18-21]. [Pg.332]

Up to now, a variety of non-zeolite/polymer mixed-matrix membranes have been developed comprising either nonporous or porous non-zeolitic materials as the dispersed phase in the continuous polymer phase. For example, non-porous and porous silica nanoparticles, alumina, activated carbon, poly(ethylene glycol) impregnated activated carbon, carbon molecular sieves, Ti02 nanoparticles, layered materials, metal-organic frameworks and mesoporous molecular sieves have been studied as the dispersed non-zeolitic materials in the mixed-matrix membranes in the literature [23-35]. This chapter does not focus on these non-zeoUte/polymer mixed-matrix membranes. Instead we describe recent progress in molecular sieve/ polymer mixed-matrix membranes, as much of the research conducted to date on mixed-matrix membranes has focused on the combination of a dispersed zeolite phase with an easily processed continuous polymer matrix. The molecular sieve/ polymer mixed-matrix membranes covered in this chapter include zeolite/polymer and non-zeolitic molecular sieve/polymer mixed-matrix membranes, such as alu-minophosphate molecular sieve (AlPO)/polymer and silicoaluminophosphate molecular sieve (SAPO)/polymer mixed-matrix membranes. [Pg.333]

Mixed-matrix membranes comprising small-pore zeolite or small-pore non-zeolitic molecular sieve materials will combine the solution-diffusion separation mechanism of the polymer material with the molecular sieving mechanism of the zeolites. The small-pore zeolite or non-zeolitic molecular sieve materials in the mixed-matrix membranes are capable of separating mixtures of molecular species... [Pg.337]

Small-pore zeolite Nu-6(2) has a NSI-type structure and two different types of eight-membered-ring channels with limiting dimensions of 2.4 and 3.2 A [54]. Gorgojo and coworkers developed mixed-matrix membranes using Nu-6(2) as the dispersed zeolite phase and polysulfone Udel as the continuous organic polymer phase [55]. These mixed-matrix membranes showed remarkably enhanced H2/ CH4 selectivity compared to the bare polysulfone membrane. The H2/CH4 selectivity increased from 13 for the bare polysulfone membrane to 398 for the Nu-6(2)/ polysulfone mixed-matrix membranes. This superior performance of the Nu-6(2)/ polysulfone mixed-matrix membranes is attributed to the molecular sieving role played by the selected Nu-6(2) zeoHte phase in the membranes. [Pg.338]


See other pages where Molecular sieving zeolite membranes is mentioned: [Pg.281]    [Pg.404]    [Pg.116]    [Pg.195]    [Pg.114]    [Pg.159]    [Pg.229]    [Pg.164]    [Pg.165]    [Pg.159]    [Pg.484]    [Pg.18]    [Pg.75]    [Pg.223]    [Pg.1850]    [Pg.2098]    [Pg.211]    [Pg.213]    [Pg.136]    [Pg.469]    [Pg.300]    [Pg.310]    [Pg.112]    [Pg.307]    [Pg.334]    [Pg.334]    [Pg.338]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Membranes zeolite

Molecular Sieving Membranes

Molecular sieve membrane

Molecular sieves

Molecular sieves, zeolitic

Molecular sieving

Molecular zeolite

Zeolites zeolite membranes

© 2024 chempedia.info