Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure moderation

The method proposed in this monograph has a firm thermodynamic basis. For vapo/-liquid equilibria, the method may be used at low or moderate pressures commonly encountered in separation operations since vapor-phase nonidealities are taken into account. For liquid-liquid equilibria the effect of pressure is usually not important unless the pressure is very large or unless conditions are near the vapor-liquid critical region. [Pg.2]

Detailed and extensive information on the UNIFAC method for estimating activity coefficients with application to vapor-liquid equilibria at moderate pressures. [Pg.8]

Comprehensive data collection for more than 6000 binary and multicomponent mixtures at moderate pressures. Data correlation and consistency tests are given for each data set. [Pg.8]

Equation (12), applicable at low or moderate pressures, is used in this monograph for typical vapor mixtures. However, when the vapor phase contains a strongly dimerizing component such as carboxylic acid. Equation (7) is not applicable and... [Pg.16]

This chapter presents a general method for estimating nonidealities in a vapor mixture containing any number of components this method is based on the virial equation of state for ordinary substances and on the chemical theory for strongly associating species such as carboxylic acids. The method is limited to moderate pressures, as commonly encountered in typical chemical engineering equipment, and should only be used for conditions remote from the critical of the mixture. [Pg.26]

A component in a vapor mixture exhibits nonideal behavior as a result of molecular interactions only when these interactions are very wea)c or very infrequent is ideal behavior approached. The fugacity coefficient (fi is a measure of nonideality and a departure of < ) from unity is a measure of the extent to which a molecule i interacts with its neighbors. The fugacity coefficient depends on pressure, temperature, and vapor composition this dependence, in the moderate pressure region covered by the truncated virial equation, is usually as follows ... [Pg.37]

This chapter uses an equation of state which is applicable only at low or moderate pressures. Serious error may result when the truncated virial equation is used at high pressures. [Pg.38]

P the other terms provide corrections which at low or moderate pressure are close to unity. To use Equation (2), we require vapor-pressure data and liquid-density data as a function of temperature. We also require fugacity coefficients, as discussed in Chapter 3. [Pg.40]

As discussed in Chapter 3, at moderate pressures, vapor-phase nonideality is usually small in comparison to liquid-phase nonideality. However, when associating carboxylic acids are present, vapor-phase nonideality may dominate. These acids dimerize appreciably in the vapor phase even at low pressures fugacity coefficients are well removed from unity. To illustrate. Figures 8 and 9 show observed and calculated vapor-liquid equilibria for two systems containing an associating component. [Pg.51]

The critical temperature of methane is 191°K. At 25°C, therefore, the reduced temperature is 1.56. If the dividing line is taken at T/T = 1.8, methane should be considered condensable at temperatures below (about) 70°C and noncondensable at higher temperatures. However, in process design calculations, it is often inconvenient to switch from one method of normalization to the other. In this monograph, since we consider only equilibria at low or moderate pressures in the region 200-600°K, we elect to consider methane as a noncondensable component. [Pg.59]

Since attention is here confined to moderate pressures, the last term in Equation (15) can be neglected. The first term in Equation (15) is given by Equation (5), with x s replacing y s. [Pg.86]

At low or moderate pressures,a Newton-Raphson iteration is not required, and the bubble and dew-point pressure iteration can be, respectively. [Pg.119]

VPLQFT is a computer program for correlating binary vapor-liquid equilibrium (VLE) data at low to moderate pressures. For such binary mixtures, the truncated virial equation of state is used to correct for vapor-phase nonidealities, except for mixtures containing organic acids where the "chemical" theory is used. The Hayden-0 Connell (1975) correlation gives either the second virial coefficients or the dimerization equilibrium constants, as required. [Pg.211]

In gases at moderate pressures the viscosity is almost independent of pressure, so Che factor in brackets on the right hand side does not depend on a or p, and it follows chat... [Pg.39]

This equation requires oniy isnowiedge of the criticai temperature and pressure for its use and gives accurate resuits in the vicinity of room temperature for unassociated substances at moderate pressures. [Pg.530]

Dust Filter. The cloth or bag dust filter is the oldest and often the most reHable of the many methods for removing dusts from an air stream. Among their advantages are high (often 99+%) collection efficiency, moderate pressure drop and power consumption, recovery of the dust in a dry and often reusable form, and no water to saturate the exhaust gases as when a wet scmbber is used. There are also numerous disadvantages maintenance for bag replacement can be expensive as well as a sometimes unpleasant task these filters are suitable only for low to moderate temperature use they cannot be used where Hquid condensation may occur they may be hazardous with combustible and explosive dusts and they are bulky, requiring considerable installation space. [Pg.403]

Heat is used to darken amber, ivory, and jade to simulate age. Pieces of amber and tortoiseshell can be reconstmcted, ie, joined under heat and moderate pressure. By careful heating in oil, milky amber can be clarified when the gas and water within small bubbles diffuse out of the stone. If heating is rapid, the attractive sun-spangle cracking shown in Figure 1 results. [Pg.221]

Ammonia—water systems operate under moderate pressures and care must be taken to avoid leaks of the irritating and toxic ammonia (qv). Sometimes a third material with a widely different density, eg, hydrogen, is added to the cycle in order to eliminate the need for mechanical pumping. [Pg.508]

Liquefied Petroleum Gas (LPG). Certain specific hydrocarbons, such as propane, butane, pentane, and their mixtures, exist in the gaseous state under atmospheric ambient conditions but can be converted to the Hquid state under conditions of moderate pressure at ambient temperature. This is termed Hquefied petroleum gas (LPG). Liquefied petroleum gas (qv) is a refinery product and the individual constituents, or light ends (Table 4), are produced during a variety of refining operations. [Pg.209]

Oxidation of cumene to cumene hydroperoxide is usually achieved in three to four oxidizers in series, where the fractional conversion is about the same for each reactor. Fresh cumene and recycled cumene are fed to the first reactor. Air is bubbled in at the bottom of the reactor and leaves at the top of each reactor. The oxidizers are operated at low to moderate pressure. Due to the exothermic nature of the oxidation reaction, heat is generated and must be removed by external cooling. A portion of cumene reacts to form dimethylbenzyl alcohol and acetophenone. Methanol is formed in the acetophenone reaction and is further oxidized to formaldehyde and formic acid. A small amount of water is also formed by the various reactions. The selectivity of the oxidation reaction is a function of oxidation conditions temperature, conversion level, residence time, and oxygen partial pressure. Typical commercial yield of cumene hydroperoxide is about 95 mol % in the oxidizers. The reaction effluent is stripped off unreacted cumene which is then recycled as feedstock. Spent air from the oxidizers is treated to recover 99.99% of the cumene and other volatile organic compounds. [Pg.288]

Commercial phosphine derivatives are produced either by the acid-cataly2ed addition of phosphine to an aldehyde or by free-radical addition to olefins, particulady a-olefins. The reactions usually take place in an autoclave under moderate pressures (<4 MPa (580 psi)) and at temperatures between 60 and 100°C. [Pg.318]

Dehydrogenation. Before the large-scale availabiUty of acetone as a co-product of phenol (qv) in some processes, dehydrogenation of isopropyl alcohol to acetone (qv) was the most widely practiced production method. A wide variety of catalysts can be used in this endothermic (66.5 kj/mol (15.9 kcal/mol) at 327°C), vapor-phase process to achieve high (75—95 mol %) conversions. Operation at 300—500°C and moderate pressures (207 kPa (2.04 atm)) provides acetone in yields up to 90 mol %. The most useful catalysts contain Cu, Cr, Zn, and Ni, either alone, as oxides, or in combinations on inert supports (see Catalysts, supported) (13-16). [Pg.105]

Reduction. Quinoline may be reduced rather selectively, depending on the reaction conditions. Raney nickel at 70—100°C and 6—7 MPa (60—70 atm) results in a 70% yield of 1,2,3,4-tetrahydroquinoline (32). Temperatures of 210—270°C produce only a slightly lower yield of decahydroquinoline [2051-28-7]. Catalytic reduction with platinum oxide in strongly acidic solution at ambient temperature and moderate pressure also gives a 70% yield of 5,6,7,8-tetrahydroquinoline [10500-57-9] (33). Further reduction of this material with sodium—ethanol produces 90% of /ra/ j -decahydroquinoline [767-92-0] (34). Reductions of the quinoline heterocycHc ring accompanied by alkylation have been reported (35). Yields vary widely sodium borohydride—acetic acid gives 17% of l,2,3,4-tetrahydro-l-(trifluoromethyl)quinoline [57928-03-7] and 79% of 1,2,3,4-tetrahydro-l-isopropylquinoline [21863-25-2]. This latter compound is obtained in the presence of acetone the use of cyanoborohydride reduces the pyridine ring without alkylation. [Pg.390]

Succinic anhydride is manufactured by catalytic hydrogenation of maleic anhydride [108-31-6]. In the most widely used commercial process this reaction is performed in the Hquid phase, at temperatures of 120—180°C and at moderate pressures, in the range of 500—4000 kPa (72—580 psi). Catalysts mentioned in the patent Hterature include nickel (124), Raney nickel (125,126), palladium on different carriers (127,128), and palladium complexes (129). The hydrogenation of the double bond is exothermic Ai/ = —133.89 kJ/mol (—32 kcal/mol) (130). [Pg.537]

Sulfur burners are normally operated at moderate pressures, in the range of 135.8—170.3 kPa (5—10 psig), using air suppHed by the main blower for the plant. [Pg.184]

Syntheses from Dry Metals and Salts. Only metaUic nickel and iron react direcdy with CO at moderate pressure and temperatures to form metal carbonyls. A report has claimed the synthesis of Co2(CO)g in 99% yield from cobalt metal and CO at high temperatures and pressures (91,92). The CO has to be absolutely free of oxygen and carbon dioxide or the yield is drastically reduced. Two patents report the formation of carbonyls from molybdenum and tungsten metal (93,94). Ruthenium and osmium do not react with CO even under drastic conditions (95,96). [Pg.67]

Carbonate Glasses. Carbonate glasses must be melted under moderate pressures to prevent the escape of carbon dioxide gas. The simplest carbonate glass forming system is K CO —MgCO. ... [Pg.330]


See other pages where Pressure moderation is mentioned: [Pg.26]    [Pg.29]    [Pg.263]    [Pg.303]    [Pg.160]    [Pg.56]    [Pg.870]    [Pg.252]    [Pg.261]    [Pg.419]    [Pg.266]    [Pg.129]    [Pg.481]    [Pg.503]    [Pg.505]    [Pg.7]    [Pg.378]    [Pg.514]    [Pg.77]    [Pg.293]    [Pg.451]    [Pg.39]    [Pg.153]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Microwave moderate-pressure discharge

Moder

Moderant

Moderants

Moderates

Moderation

Moderation, pressure volume

Moderator

Non-Equilibrium Microwave Discharges of Moderate Pressure

Non-Thermal RF-CCP Discharges in Moderate Pressure Regimes

Pressurized heavy water-moderated reactor

© 2019 chempedia.info