Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model system theory

Model System Theory. In contrast to static headspace, which looks only at the concentration of the volatiles in the headspace, the aim of dynamic headspace is to transfer as much as possible of the volatiles in the food to the trap. Some understanding of the transfer can obtained by considering model systems. As fruits, vegetables and plant materials have high concentrations (70-90%) of water, it is usefiil to consider model systems of solutions of volatile components in water. With such systems it is possible to calculate the total volume of sweep gas (Vg) needed to transfer a certain pCTcentage (P) of the dissolved volatile component to the trap (22,28). This can be done with the following relation ... [Pg.244]

These are but a few of them single event theory chain of events theory epidemiological models systems theory models multilinear events sequencing human factors models life change unit theory motivation-reward satisfaction models and the management oversight and risk tree model. [Pg.171]

The remainder of this contribution is organized as follows. In section C2.6.2, some well studied colloidal model systems are introduced. Methods for characterizing colloidal suspensions are presented in section C2.6.3. An essential starting point for understanding the behaviour of colloids is a description of the interactions between particles. Various factors contributing to these are discussed in section C2.6.4. Following on from this, theories of colloid stability and of the kinetics of aggregation are presented in section C2.6.5. Finally, section C2.6.6 is devoted to the phase behaviour of concentrated suspensions. [Pg.2668]

This technique can be used to model a complete system as a small model system and the complete system. The complete system would be computed using only the lower level of theory. The model system would be computed with both levels of theory. The energy for the complete system, combining both levels of theory, would then be... [Pg.201]

In numerous applications of polymeric materials multilayers of films are used. This practice is found in microelectronic, aeronautical, and biomedical applications to name a few. Developing good adhesion between these layers requires interdiffusion of the molecules at the interfaces between the layers over size scales comparable to the molecular diameter (tens of nm). In addition, these interfaces are buried within the specimen. Aside from this practical aspect, interdififlision over short distances holds the key for critically evaluating current theories of polymer difllision. Theories of polymer interdiffusion predict specific shapes for the concentration profile of segments across the interface as a function of time. Interdiffiision studies on bilayered specimen comprised of a layer of polystyrene (PS) on a layer of perdeuterated (PS) d-PS, can be used as a model system that will capture the fundamental physics of the problem. Initially, the bilayer will have a sharp interface, which upon annealing will broaden with time. [Pg.667]

D. P. Landau, M. Krech. Spin dynamics simulations of ferro- and antiferromagnetic model systems comparison with theory and experiment. J Phys Condens Matter 77 R175-R213, 1999. [Pg.69]

The species H2 and H3+ are important as model systems for chemical bonding theory. The hydrogen molecule ion H2+ comprises 2 protons and 1 electron and is extremely unstable even in a low-pressure gas discharge system the energy of dissociation and the intemuclear distance (with the corresponding values for H2 in parentheses) are ... [Pg.37]

Other important historical landmarks include the founding, in 1984, of the Santa Fe Institute, which is one of the leading interdisciplinary centers for complex systems theory research the first conference devoted solely to research in cellular automata (which is a prototypical mathematical model of complex systems), organized by Farmer, Toffoli and Wolfram at MIT in 1984 [farmer84] and the first artificial life conference, organized by Chri.s Langton at Los Alamos National Laboratory, in 1987 [lang89]. [Pg.4]

While the history of CA can be traced back to early Systems Theory and rigorous mathematical analyses conducted primarily by Russian researchers in the 1930s and 40s, their more recent incarnation as simple models of complexity in nature can arguably be traced to a single landmark review paper published by Wolfram in the Reviews of Modern Physics in 1983 [wolf83a]. [Pg.835]

Uncovering of the three dimentional structure of catalytic groups at the active site of an enzyme allows to theorize the catalytic mechanism, and the theory accelerates the designing of model systems. Examples of such enzymes are zinc ion containing carboxypeptidase A 1-5) and carbonic anhydrase6-11. There are many other zinc enzymes with a variety of catalytic functions. For example, alcohol dehydrogenase is also a zinc enzyme and the subject of intensive model studies. However, the topics of this review will be confined to the model studies of the former hydrolytic metallo-enzymes. [Pg.145]

Although many interface models have been given so far, they are too qualitative and we can hardly connect them to the mechanics and mechanism of carbon black reinforcement of rubbers. On the other hand, many kinds of theories have also been proposed to explain the phenomena, but most of them deal only with a part of the phenomena and they could not totally answer the above four questions. The author has proposed a new interface model and theory to understand the mechanics and mechanism of carbon black reinforcement of rubbers based on the finite element method (FEM) stress analysis of the filled system, in journals and a book. In the new model and theory, the importance of carbon gel (bound rubber) in carbon black reinforcement of rubbers is emphasized repeatedly. Actually, it is not too much to say that the existence of bound rubber and its changeable and deformable characters depending on the magnitude of extension are the essence of carbon black reinforcement of rubbers. [Pg.519]

Figure 10. Arrhenius plot of the thermal rate constants for the 2D model system. Circles-full quantum results. Thick solid (dashed) curve present nonadiabatic transition state theory by using the seam surface [the minimum energy crossing point (MECP)] approximation. Thin solid and dashed curves are the same as the thick ones except that the classical partition functions are used. Taken from Ref. [27]. Figure 10. Arrhenius plot of the thermal rate constants for the 2D model system. Circles-full quantum results. Thick solid (dashed) curve present nonadiabatic transition state theory by using the seam surface [the minimum energy crossing point (MECP)] approximation. Thin solid and dashed curves are the same as the thick ones except that the classical partition functions are used. Taken from Ref. [27].
The photodecomposition and thermodecomposition of nitromethane have been extensively studied as model systems in combustion, explosion and atmosphere pollution processes[l]. On another hand, nitromethane was selected as a model solvent in experiments aimed at examining non hydrogen-bonded solvent effects in a general acid-base theory of organic molecules [2.3]. This selection is based on the electronic and structural characteristics of nitromethane that has a high dielectric constant, and at the same time cannot form hydrogen bonds with solute molecules. [Pg.421]

The elaboration of the most efficient chromatographic systems for the optimization of velocity and resolution of the chromatographic process is necessary for solving different analytical problems. The most important factor in the TLC optimization is the mobile phase composition. Taking into consideration the similarity in the retention mechanism between TLC and PLC, the optimized TLC mobile phase can be transferred to the preparative chromatographic system. There are different accepted models and theories for the separation and optimization of chromatographic systems [19,20,61]. [Pg.87]

While experiment and theory have made tremendous advances over the past few decades in elucidating the molecular processes and transformations that occur over ideal single-crystal surfaces, the application to aqueous phase catalytic systems has been quite limited owing to the challenges associated with following the stmcture and dynamics of the solution phase over metal substrates. Even in the case of a submersed ideal single-crystal surface, there are a number of important issues that have obscured our ability to elucidate the important surface intermediates and follow the elementary physicochemical surface processes. The ability to spectroscopically isolate and resolve reaction intermediates at the aqueous/metal interface has made it difficult to experimentally estabhsh the surface chemistry. In addition, theoretical advances and CPU limitations have restricted ab initio efforts to very small and idealized model systems. [Pg.95]

Chandra and his coworkers have developed analytical theories to predict and explain the interfacial solvation dynamics. For example, Chandra et al. [61] have developed a time-dependent density functional theory to predict polarization relaxation at the solid-liquid interface. They find that the interfacial molecules relax more slowly than does the bulk and that the rate of relaxation changes nonmonotonically with distance from the interface They attribute the changing relaxation rate to the presence of distinct solvent layers at the interface. Senapati and Chandra have applied theories of solvents at interfaces to a range of model systems [62-64]. [Pg.415]

From the last example, we may see why the primary mathematical tools in modem control are based on linear system theories and time domain analysis. Part of the confusion in learning these more advanced techniques is that the umbilical cord to Laplace transform is not entirely severed, and we need to appreciate the link between the two approaches. On the bright side, if we can convert a state space model to transfer function form, we can still make use of classical control techniques. A couple of examples in Chapter 9 will illustrate how classical and state space techniques can work together. [Pg.70]


See other pages where Model system theory is mentioned: [Pg.881]    [Pg.769]    [Pg.575]    [Pg.341]    [Pg.237]    [Pg.531]    [Pg.68]    [Pg.251]    [Pg.12]    [Pg.1]    [Pg.19]    [Pg.693]    [Pg.742]    [Pg.178]    [Pg.445]    [Pg.17]    [Pg.54]    [Pg.243]    [Pg.199]    [Pg.258]    [Pg.125]    [Pg.379]    [Pg.48]    [Pg.120]    [Pg.498]    [Pg.35]    [Pg.179]    [Pg.185]    [Pg.159]    [Pg.5]    [Pg.88]    [Pg.194]    [Pg.237]   
See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Model theory

System theory

Systemic theory

© 2024 chempedia.info