Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixed metal oxides catalytic active sites

Partial oxidations over complex mixed metal oxides are far from ideal for singlecrystal like studies of catalyst structure and reaction mechanisms, although several detailed (and by no means unreasonable) catalytic cycles have been postulated. Successful catalysts are believed to have surfaces that react selectively vith adsorbed organic reactants at positions where oxygen of only limited reactivity is present. This results in the desired partially oxidized products and a reduced catalytic site, exposing oxygen deficiencies. Such sites are reoxidized by oxygen from the bulk that is supplied by gas-phase O2 activated at remote sites. [Pg.374]

Supported metal oxide catalysts are a new class of catalytic materials that are excellent oxidation catalysts when redox surface sites are present. They are ideal catalysts for investigating catalytic molecular/electronic structure-activity selectivity relationships for oxidation reactions because (i) the number of catalytic active sites can be systematically controlled, which allows the determination of the number of participating catalytic active sites in the reaction, (ii) the TOP values for oxidation studies can be quantitatively determined since the number of exposed catalytic active sites can be easily determined, (iii) the oxide support can be varied to examine the effect of different types of ligand on the reaction kinetics, (iii) the molecular and electronic structures of the surface MOj, species can be spectroscopically determined under all environmental conditions for structure-activity determination and (iv) the redox surface sites can be combined with surface acid sites to examine the effect of surface Bronsted or Lewis acid sites. Such fundamental structure-activity information can provide insights and also guide the molecular engineering of advanced hydrocarbon oxidation metal oxide catalysts such as supported metal oxides, polyoxo metallates, metal oxide supported zeolites and molecular sieves, bulk mixed metal oxides and metal oxide supported clays. [Pg.496]

Recently reported meso- and macroscale self-assembly approaches conducted, respectively, in the presence of surfactant mesophases [134-136] and colloidal sphere arrays [137] are highly promising for the molecular engineering of novel catalytic mixed metal oxides. These novel methods offer the possibility to control surface and bulk chemistry (e.g. the V oxidation state and P/V ratios), wall nature (i.e. amorphous or nanocrystalline), morphology, pore structures and surface areas of mixed metal oxides. Furthermore, these novel catalysts represent well-defined model systems that are expected to lead to new insights into the nature of the active and selective surface sites and the mechanism of n-butane oxidation. In this section, we describe several promising synthesis approaches to VPO catalysts, such as the self-assembly of mesostructured VPO phases, the synthesis of macroporous VPO phases, intercalation and pillaring of layered VPO phases and other methods. [Pg.35]

There are several physical and chemical characteristics of these oxide pyrochlores which may contribute to their high electrocatalytic activity. The previously described alkaline solution synthesis technique (6,7) provided these materials with surface areas typically ranging from 50 to 200 m /g. Thus, one of the basic requirements for an effective electrocatalyst has been satisfied the electrocatalytic activity is not limited by the unavailability of catalytically active surface sites, as is so often the case with metal and mixed metal oxides. [Pg.161]

Metal oxide catalysts are extensively employed in the chemical, petroleum and pollution control industries as oxidation catalysts (e.g., oxidation of methanol to formaldehyde, oxidation of o-xylene to phthalic anhydride, ammoxidation of propylene/propane to acrylonitrile, selective oxidation of HjS to elemental sulfur (SuperClaus) or SO2/SO3, selective catalytic reduction (SCR) of NO, with NHj, catalytic combustion of VOCs, etc.)- A special class of metal oxide catalysts consists of supported metal oxide catalysts, where an active phase (e.g., vanadium oxide) is deposited on a high surface area oxide support (e.g., alumina, titania, ziiconia, niobia, ceria, etc.). Supported metal oxide catalysts provide several advantages over bulk mixed metal oxide catalysts for fundamental studies since (1) the number of surface active sites can be controlled because the active metal oxide is 100% dispersed on the oxide support below monolayer coverage,... [Pg.305]

Bonding modifiers are employed to weaken or strengthen the chemisorption bonds of reactants and products. Strong electron donors (such as potassium) or electron acceptors (such as chlorine) that are coadsorbed on the catalyst surface are often used for this purpose. Alloying may create new active sites (mixed metal sites) that can greatly modify activity and selectivity. New catalytically active sites can also be created at the interface between the metal and the high-surface-area oxide support. In this circumstance the catalyst exhibits the so-called strong metal-support interaction (SMSI). Titanium oxide frequently shows this effect when used as a support for catalysis by transition metals. Often the sites created at the oxide-metal interface are much more active than the sites on the transition metal. [Pg.456]

I.E. Wachs, Molecular structures of surface metal oxide species Nature of catalytic active sites in mixed metal oxides, in Metal oxides Chemistry and applications, Taylor Francis Group, LLC Boca Raton, FL, pp. 1-30, 2006. [Pg.276]

Another propylene ammoxidation catalyst that was used commercially was U-Sb-0. This catalyst system was discovered and patented by SOHIO in the mid-1960s (26,27). Optimum yield of acrylonitrile from propylene required sufficient antimony in the formulation in order to ensure the presence of the USbaOio phase rather than the alternative uranium antimonate compound USbOs (28-30). The need for high antimony content was understood to stem from the necessity to isolate the uranium cations on the surface, which were presumed to be the sites for partial oxidation of propylene. Isolation by the relatively inactive antimony cation prevented complete oxidation of propylene to CO2. Later publications and patents showed that the activity of the U-Sb-0 catalyst is increased by more than an order of magnitude by the substitution of a tetravalent cation, tin, titanium, and zirconium (31). Titanium was found to be especially effective. The promoting effect results in the formation of a solid solution by isomorphous substitution of the tetravalent cation for Sb + within the catalytically active USbaOio- phase. This substitution produces o gen vacancies in the lattice and thus increases the facility for diffusion of lattice o gen in the solid structure. As is discussed below, the enhanced diffusion of o gen is directly linked to increased activity of selective (amm)oxidation catalysts based on mixed metal oxides. [Pg.248]

Over the past two decades, Raman spectroscopy has been extensively applied during catalytic oxidation reactions by mixed-metal oxides and metals under in situ and operando spectroscopy conditions, which has allowed the direct identification of the catalytic active sites involved in the oxidation reactions. Among the multiple spectroscopic techniques that can provide information about the catalytic active sites under oxidation reaction conditions, Raman spectroscopy is unique because of its ability to directly provide molecular level information that allows discrimination among the different catalytic active sites which may be present in the oxidation catalyst. This chapter provides a snapshot of the types of fundamental information obtainable by Raman spectroscopy, and the different types of catalytic materials and oxidation reactions that have been reported, especially under oxidation reaction conditions. [Pg.420]

Ml phase " represents the clearest example of a multifunctional catalyst in which each element, in close geometrical and electronic synergy with the surrounding elements, plays a specific role in turn, as an isolated active site, in every reaction step for the alkane transformation into the partial oxidation product desired. The flexibility of the structure allows modification of the catalyst composition and hence its catalytic behavior. Moreover, this type of mixed-metal oxide catalyst has the ability to catalyze other different oxidation reactions starting from alkanes, such as propane oxidation to acrylic acid, " oxidative dehydrogenation of ethane to ethylene, and n-butane selective oxidation. ... [Pg.798]

Molecular Structures of Surface Metal Oxide Species Nature of Catalytic Active Sites in Mixed Metal Oxides... [Pg.1]

Metal oxide catalytic materials currently find wide application in the petroleum, chemical, and environmental industries, and their uses have significantly expanded since the mid-20th century (especially in environmental applications) [1,2], Bulk mixed metal oxides are extensively employed by the chemical industries as selective oxidation catalysts in the synthesis of chemical intermediates. Supported metal oxides are also used as selective oxidation catalysts by the chemical industry, as environmental catalysts, to selectively transform undesirable pollutants to nonnox-ious forms, and as components of catalysts employed by the petroleum industry. Zeolite and molecular sieve catalytic materials are employed as solid acid catalysts in the petroleum industry and as aqueous selective oxidation catalysts in the chemical industry, respectively. Zeolites and molecular sieves are also employed as sorbents for separation of gases and to trap toxic impurities that may be present in water supplies. Significant molecular spectroscopic advances in recent years have finally allowed the nature of the active surface sites present in these different metal oxide catalytic materials to be determined in different environments. This chapter examines our current state of knowledge of the molecular structures of the active surface metal oxide species present in metal oxide catalysts and the influence of different environments upon the structures of these catalytic active sites. [Pg.2]

It is seen that metal and metal oxide catalysts have significant roles in the catalyHc process for the production of fuels and chemicals. There are several catalysts that are used commercially in the biorefinery system to produce fuels and chemicals. Metal oxides are composed of cations possessing Lewis acid sites and anions wifh Br0nsted base sites. They are classified into single metal oxides and mixed metal oxides. Transition metal oxides have catalytic activity for cellulose hydrolysis, and when used as solid acid catalysts, they are reusable and thus may be easily separated from the reaction mixture. [Pg.410]

In the mixed potential theory (MPT) model, both partial reactions occur randomly on the surface, both with respect to time and space. However, given the catalytic nature of the reductant oxidation reaction, it may be contended that such a reaction would tend to favor active sites on the surface, especially at the onset of deposition, and especially on an insulator surface catalyzed with Pd nuclei. Since each reaction strives to reach its own equilibrium potential and impose this on the surface, a situation is achieved in which a compromise potential, known as the mixed potential (.Emp), is assumed by the surface. Spiro [27] has argued the mixed potential should more correctly be termed the mixture potential , since it is the potential adopted by the complete electroless solution which comprises a mixture of reducing agent and metal ions, along with other constituents. However, the term mixed potential is deeply entrenched in the literature relating to several systems, not just electroless deposition. [Pg.229]


See other pages where Mixed metal oxides catalytic active sites is mentioned: [Pg.483]    [Pg.193]    [Pg.204]    [Pg.413]    [Pg.186]    [Pg.1]    [Pg.4517]    [Pg.40]    [Pg.963]    [Pg.4516]    [Pg.155]    [Pg.10]    [Pg.234]    [Pg.412]    [Pg.24]    [Pg.69]    [Pg.206]    [Pg.485]    [Pg.491]    [Pg.130]    [Pg.638]    [Pg.274]    [Pg.317]    [Pg.72]    [Pg.496]    [Pg.251]    [Pg.35]    [Pg.240]    [Pg.208]    [Pg.205]    [Pg.96]    [Pg.138]    [Pg.469]    [Pg.48]    [Pg.75]   


SEARCH



Activated oxidation

Activation oxidation

Active Mixing

Active metal oxides

Active metals, catalyts

Active oxides

Activity oxidation

Catalytic metals

Catalytic site

Catalytic site activity

Catalytically active metals

Catalytically active sites

Metal catalytic oxidation

Metal oxides catalytic activity

Metal sites

Metallic oxide activators

Metals catalytic activity

Mixed metal

Mixed oxides

Oxidation active sites

Oxidation sites

Oxidative activation

Oxide sites

Oxides activated

Oxides active sites

Oxidizing activators

© 2024 chempedia.info