Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active metals, catalyts

Final purification of argon is readily accompHshed by several methods. Purification by passage over heated active metals or by selective adsorption (76) is practiced. More commonly argon is purified by the addition of a small excess of hydrogen, catalytic combustion to water, and finally redistiHation to remove both the excess hydrogen and any traces of nitrogen (see Fig. 5) (see Exhaust control, industrial). With careful control, argon purities exceed 99.999%. [Pg.11]

Catalysis. Ion implantation and sputtering in general are useful methods for preparing catalysts on metal and insulator substrates. This has been demonstrated for reactions at gas—soHd and Hquid—soHd interfaces. Ion implantation should be considered in cases where good adhesion of the active metal to the substrate is needed or production of novel materials with catalytic properties different from either the substrate or the pure active metal is wanted (129—131). Ion beam mixing of deposited films also promises interesting prospects for the preparation of catalysts (132). [Pg.398]

It has been reported that below about 370°C, sulfur oxides reversibly inhibit CO conversion activity. This inhibition is greater at lower temperatures. CO conversion activity returns to normal shortly after removal of the sulfur from the exhaust (44). Above about 315°C, sulfur oxides react with the high surface area oxides to disperse the precious-metal catalytic agents and irreversibly poison CO conversion activity. [Pg.512]

In particular, emphasis will be placed on the use of chemisorption to measure the metal dispersion, metal area, or particle size of catalytically active metals supported on nonreducible oxides such as the refractory oxides, silica, alumina, silica-alumina, and zeolites. In contrast to physical adsorption, there are no complete books devoted to this aspect of catalyst characterization however, there is a chapter in Anderson that discusses the subject. [Pg.740]

Abstract—Carbon nanotubules were produced in a large amount by catalytic decomposition of acetylene in the presence of various supported transition metal catalysts. The influence of different parameters such as the nature of the support, the size of active metal particles and the reaction conditions on the formation of nanotubules was studied. The process was optimized towards the production of nanotubules having the same diameters as the fullerene tubules obtained from the arc-discharge method. The separation of tubules from the substrate, their purification and opening were also investigated. [Pg.15]

There is a wide variety of solid electrolytes and, depending on their composition, these anionic, cationic or mixed conducting materials exhibit substantial ionic conductivity at temperatures between 25 and 1000°C. Within this very broad temperature range, which covers practically all heterogeneous catalytic reactions, solid electrolytes can be used to induce the NEMCA effect and thus activate heterogeneous catalytic reactions. As will become apparent throughout this book they behave, under the influence of the applied potential, as active catalyst supports by becoming reversible in situ promoter donors or poison acceptors for the catalytically active metal surface. [Pg.3]

Since the catalytically active phase is frequently quite expensive (e.g. noble metals) it is clear that it is in principle advantageous to prepare catalysts with high, approaching 100%, catalyst dispersion Dc. This can be usually accomplished without much difficulty by impregnating the porous carrier with an aqueous solution of a soluble compound (acid or salt) of the active metal followed by drying, calcination and reduction.1... [Pg.487]

The catalytic activity of micelles bearing catalytically active metal counterions (Lewis acid-surfactant combined catalysts, LASCs) on Diels-Alder reactions was recently investigated [72a, 76]. [Pg.176]

The effects of aluminium, zinc, iron, nickel and copper powders on the thermal degradation of waste PS were studied. The results showed that the catalytic effects of metal powders were related to their activities. The catalytic effects increased with increasing activities of metals. It was suggested that PS degraded through a transient intermediate in the presence of metal powders and that the degradation of the transient intermediate was the rate-determining step. 10 refs. [Pg.52]

Industrially, the perfluoroalkyl iodides by telomerization are mostly made by a batch system using peroxide initiators. However, the difficulty of mass production, and the production of hydrogen-containing byproducts in the process are disadvantageous [4]. In this study, a continuous process for the preparation of perfluoroalkyl iodides over nanosized metal catalysts in gas phase and the effects of the particle size on the catalytic activities of different the preparation methods and active metals were considered. [Pg.301]

Mesoporous carbon materials were prepared using ordered silica templates. The Pt catalysts supported on mesoporous carbons were prepared by an impregnation method for use in the methanol electro-oxidation. The Pt/MC catalysts retained highly dispersed Pt particles on the supports. In the methanol electro-oxidation, the Pt/MC catalysts exhibited better catalytic performance than the Pt/Vulcan catalyst. The enhanced catalytic performance of Pt/MC catalysts resulted from large active metal surface areas. The catalytic performance was in the following order Pt/CMK-1 > Pt/CMK-3 > Pt/Vulcan. It was also revealed that CMK-1 with 3-dimensional pore structure was more favorable for metal dispersion than CMK-3 with 2-dimensional pore arrangement. It is eoncluded that the metal dispersion was a critical factor determining the catalytic performance in the methanol electro-oxidation. [Pg.612]

Ni catalysts u g ZrOj as a unique support that seems crucial to minimize coking under reaction conditions applied for CH4/CO2 reforming. For two successfiiUy developed catalysts, (Pt and Ni on Z1O2) the present contribution outlines the sequence of the elementary steps and the catalytic chemistry of the active metal and the support in order to explain catalysts activity and stability. [Pg.464]

Transition metal oxides represent a prominent class of partial oxidation catalysts [1-3]. Nevertheless, materials belonging to this class are also active in catalytic combustion. Total oxidation processes for environmental protection are mostly carried out industriaUy on the much more expensive noble metal-based catalysts [4]. Total oxidation is directly related to partial oxidation, athough opposes to it. Thus, investigations on the mechanism of catalytic combustion by transition metal oxides can be useful both to avoid it in partial oxidation and to develop new cheaper materials for catalytic combustion processes. However, although some aspects of the selective oxidation mechanisms appear to be rather established, like the involvement of lattice catalyst oxygen (nucleophilic oxygen) in Mars-van Krevelen type redox cycles [5], others are still uncompletely clarified. Even less is known on the mechanism of total oxidation over transition metal oxides [1-4,6]. [Pg.483]

Olefin metathesis is a rearrangement reaction that includes a transition metal carbene and an olefin. After the catalytic cycle, a new olefin and a new active metal carbene are formed (Scheme 3.5) [90],... [Pg.81]

On the basis of this prior knowledge, it was no surprise for us to find a whole plethora of (catalytically very active) metal nanoparticles with tunable size, morphology, and structure when we applied modern analytical tools including structure modelling to revisit Ziegler s classical findings [305-307]. [Pg.34]

Finke has reported remarkable catalytic lifetimes for the polyoxoanion- and tetrabutylammonium-stabi-lized transition metal nanoclusters [288-292]. For example in the catalytic hydrogenation of cyclohexene, a common test for structure insensitive reactions, the lr(0) nanocluster [296] showed up to 18,000 total turnovers with turnover frequencies of 3200 h [293]. As many as 190,000 turnovers were reported in the case of the Rh(0) analogue reported recently. Obviously, the polyoxoanion component prevents the precious metal nanoparticles from aggregating so that the active metals exhibit a high surface area [297]. [Pg.38]

In the sixties of past century, a few patents issued to Bergbau Chemie [5,48,49] and to Mobil Oil [50-52], respectively described the use of CFPs as supports for catalytically active metal nanoclusters and as carriers for heterogenized metal complexes of catalytic relevance. For the latter catalysts the term hybrid phase catalysts later came into use [53,54], At that time coordination chemistry and organo-transition metal chemistry were in full development. Homogeneous transition metal catalysis was expected to grow in industrial relevance [54], but catalyst separation was generally a major problem for continuous processing. That is why the concept of hybrid catalysis became very popular in a short time [55]. [Pg.208]

Cross-linked functional polymers appear to be suitable supports for catalytically active metal(O) nanoclusters. [Pg.229]

In this chapter the potential of nanostructured metal systems in catalysis and the production of fine chemicals has been underlined. The crucial role of particle size in determining the activity and selectivity of the catalytic systems has been pointed out several examples of important reactions have been presented and the reaction conditions also described. Metal Vapor Synthesis has proved to be a powerful tool for the generation of catalytically active microclusters SMA and nanoparticles. SMA are unique homogeneous catalytic precursors and they can be very convenient starting materials for the gentle deposition of catalytically active metal nanoparticles of controlled size. [Pg.450]


See other pages where Active metals, catalyts is mentioned: [Pg.54]    [Pg.54]    [Pg.75]    [Pg.82]    [Pg.169]    [Pg.41]    [Pg.10]    [Pg.15]    [Pg.237]    [Pg.204]    [Pg.230]    [Pg.90]    [Pg.80]    [Pg.338]    [Pg.303]    [Pg.32]    [Pg.316]    [Pg.190]    [Pg.313]    [Pg.755]    [Pg.54]    [Pg.55]    [Pg.274]    [Pg.221]    [Pg.100]    [Pg.204]    [Pg.212]    [Pg.226]    [Pg.226]    [Pg.228]    [Pg.430]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Alkaline earth metal oxides catalytic activity

Catalytic Activity of Noble Metal Porphyrins

Catalytic activities of metals

Catalytic activity of transition metal

Catalytic activity transition metal oxides, related

Catalytic cyclization, metal activity

Catalytic metals

Catalytically active filters metal oxides

Catalytically active metals

Catalytically active metals

Hypovalency, agostic interactions, and related aspects of catalytic activation at metal centers

Metal Composites with Catalytic Activity in Biomass Conversion

Metal carbonyls catalytic activity

Metal organic frameworks catalytic active sites

Metal oxide bulk doping catalytic activity

Metal oxides catalytic activity

Metal product, catalytically active

Metal-polymer film materials catalytic activity

Metals catalytic activity

Metals catalytic activity

Metals catalytic activity, methanol synthesis

Mixed metal oxides catalytic active sites

The Catalytic Activities of Metals

Transition Metal Derivatives and Catalytic Activity

Transition metal catalytic activity

Transition metal oxides catalytic activity

© 2024 chempedia.info