Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micellar systems, solute

The conformation of bovine myelin basic protein (MBP) in AOT/isooctane/water reversed micellar systems was studied by Waks et al. 67). This MBP is an extrinsic water soluble protein which attains an extended conformation in aqueous solution 68 but is more density packed at the membrane surface. The solubilization of MBP in the AOT reversed micelles depends on the water/AOT-ratio w0 68). The maximum of solubilization was observed at a w0-value as low as 5.56. The same value was obtained for another major protein component of myelin, the Folch-Pi proteolipid 69). According to fluorescence emission spectra of MBP, accessibility of the single tryptophane residue seems to be decreased in AOT reversed micelles. From CD-spectra one can conclude that there is a higher conformational rigidity in reversed micelles and a more ordered aqueous environment. [Pg.10]

Very large solvent effects arc also observed for systems where the monomers can aggregate either with themselves or another species. For example, the apparent kp for polymerizable surfactants, such as certain vinyl pyridinium salts and alkyl salts of dimethylaminoalkyl methacrylates, in aqueous solution above the critical micelle concentration (cmc) are dramatically higher than they are below the cmc in water or in non-aqueous media.77 This docs not mean that the value for the kp is higher. The heterogeneity of the medium needs to be considered. In the micellar system, the effective concentration of double bonds in the vicinity of the... [Pg.426]

Investigations of the solubilization of water and aqueous NaCl solutions in mixed reverse micellar systems formed with AOT and nonionic surfactants in hydrocarbons emphasized the presence of a maximum solubilization capacity of water, occurring at a certain concentration of NaCl, which is significantly influenced by the solvent used [132],... [Pg.485]

Optimizing the formulation of micellar surfactant solutions used for enhanced oil recovery consists of obtaining interfacial tensions as low as possible in multiphase systems, which can be achieved by mixing the injected solution with formation fluids. The solubilization of hydrocarbons by the micellar phases of such systems is linked directly to the interfacial efficiency of surfactants. Numerous research projects have shown that the amount of hydrocarbons solubilized by the surfactant is generally as great as the interfacial tension between the micellar phase and the hydrocarbons. The solubilization of crude oils depends strongly on their chemical composition [155]. [Pg.200]

Disperse systems can also be classified on the basis of their aggregation behavior as molecular or micellar (association) systems. Molecular dispersions are composed of single macromolecules distributed uniformly within the medium, e.g., protein and polymer solutions. In micellar systems, the units of the dispersed phase consist of several molecules, which arrange themselves to form aggregates, such as surfactant micelles in aqueous solutions. [Pg.244]

Since there would be increased overall lipid concentration in the dodecane solution, we decided to create a sink condition in the acceptor wells, to lower the membrane retention. We discovered that the pH 7.4 buffer saturated with sodium laurel sulfate serves as an excellent artificial sink-forming medium. Since the new PAMPA membranes would possess substantial negative charge, the negatively charged micellar system was not expected to act as an aggressive detergent to the two-component artificial membrane infused in the microfilter. [Pg.171]

Dagaonkar MV, Mehra A, Jain R, Heeres HJ (2004) Synthesis of CaC03 nanoparticles by carbonation Of lime solutions in reverse micellar systems. Chem Eng Res Des 82 (11) 1438-1443... [Pg.187]

Most studies of micellar systems have been carried out on synthetic surfactants where the polar or ionic head group may be cationic, e.g. an ammonium or pyridinium ion, anionic, e.g. a carboxylate, sulfate or sulfonate ion, non-ionic, e.g. hydroxy-compound, or zwitterionic, e.g. an amine oxide or a carboxylate or sulfonate betaine. Surfactants are often given trivial or trade names, and abbreviations based on either trivial or systematic names are freely used (Fendler and Fendler, 1975). Many commercial surfactants are mixtures so that purity can be a major problem. In addition, some surfactants, e.g. monoalkyl sulfates, decompose slowly in aqueous solution. Some examples of surfactants are given in Table 1, together with values of the critical micelle concentration, cmc. This is the surfactant concentration at the onset of micellization (Mukerjee and Mysels, 1970) and can therefore be taken to be the maximum concentration of monomeric surfactant in a solution (Menger and Portnoy, 1967). Its value is related to the change of free energy on micellization (Fendler and Fendler, 1975 Lindman and Wennerstrom, 1980). [Pg.215]

Instead of applying synthetic methods to alter chromophore reactivity, this new way of controlling chemical reactivity involves choosing an appropriate solid micellar system (from the available multitude) and exploiting it to manipulate the chemistry of the entrapped compound. The sol-gel matrix and the micellar solubilization, in fact, have a synergetic effect. Their combination produces effects stronger and more tuneable than in solution, so that a careful selection of sol-gel entrapped surfactants allows one to induce enormous changes in the dopant properties. [Pg.26]

The partial racemization of isolated 2-octanol suggests that the hydrolysis may proceed via ionization of optically active substrates as in the Sjjl hydrolysis in homogeneous solution. The hydrolysis via ionization may be suppressed in media with low dielectric constant like micelles (Okamoto and Kinoshita, 1972), resulting in net retention. The ineffectiveness of the stereochemical influence of the CTAB micelle may be interpreted as a consequence of the mutual repulsion of the positively charged head groups of [46] and CTAB, so there is need for molecules of solvent to be incorporated between surfactant head groups (Sukenik et al., 1975). An appreciable increase in retention was also observed in a reversed micellar system (Kinoshita and Okamoto, 1977). [Pg.462]

Fluorescence quenching studies in micellar systems provide quantitative information not only on the aggregation number but also on counterion binding and on the effect of additives on the micellization process. The solubilizing process (partition coefficients between the aqueous phase and the micellar pseudo-phase, entry and exit rates of solutes) can also be characterized by fluorescence quenching. [Pg.89]

As we have seen, an area of major importance and of considerable interest is that of substitution reactions of metal complexes in aqueous, nonaqueous and organized assemblies (particularly micellar systems). The accumulation of a great deal of data on substitution in nickel(II) and cobalt(II) in solution (9) has failed to shake the dissociative mechanism for substitution and for these the statement "The mechanisms of formation reactions of solvated metal cations have also been settled, the majority taking place by the Eigen-Wilkins interchange mechanism or by understandable variants of it" (10) seems appropriate. Required, however, are more data for substitution in the other... [Pg.446]

The encapsulation of pDNA can also be accomplished with the use of a detergent dialysis procedure (12). In contrast to the PFV approach, the detergent dialysis procedure starts off with a micellar system and leads to encapsulation of pDNA in unilamellar liposomes called SPLP after detergent removal. Plasmid entrapment relies on a delicate balance between cationic lipid content and ionic strength of the solution. [Pg.134]

The finding that the assumptions of the regular solution approximation do not hold for the mixed micellar systems investigated here suggests a re-examination of how the thermodynamics of mixing enter the nonideal mixed micelle model. [Pg.150]

In this system, in the aqueous phase, the micellar system, NaDDS, on addition of butanol would change in free energy due to mixed micelle formation (i. je. NaDDS+n-Butanol), as we showed in an earlier study (23). The cahnge in free energy is also observed from the fact that both the critical micelle concentration (c.m.c.) and the Krafft point of NaDDS solution change on addition of n-Butanol (23,... [Pg.334]

The structure and properties of water soluble dendrimers, such as 46, is, in itself, a very promising area of research due to their similarity with natural micellar systems. As can be seen from the two-dimensional representation of 46 the structure contains a hydrophobic inner core surrounded by a hydrophilic layer of carboxylate groups (Fig. 12). However these dendritic micelles differ from traditional micelles in that they are static, covalently bound structures instead of dynamic associations of individual molecules. A number of studies have exploited this unique feature of dendritic micelles in the design of novel recyclable solubilization and extraction systems that may find great application in the recovery of organic materials from aqueous solutions [84,86-88]. These studies have also shown that dendritic micelles can solubilize hydrophobic molecules in aqueous solution to the same, if not greater, extent than traditional SDS micelles. The advantages of these dendritic micelles are that they do not suffer from a critical micelle concentration and therefore display solvation ability at nanomolar... [Pg.149]

The addition of salts to micelles gives large micelles that turn into cylindrical shapes. However, the addition of cosurfactant produces the liquid crystal phase. As a consequence, these micellar systems with added cosurfactant are found to undergo several macroscopic phase transitions in dilute solutions. These transitions are as follows ... [Pg.190]

The separation and determination of long-chain fatty acids using conventional CE are very difficult, because these compounds have poor aqueous solubility and low UV activity. It is possible to separate them in aqueous organic solutions, nonaqueous solutions, or micellar systems. All these sep-... [Pg.154]

Singer LA (1982) Fluorescence Probes of Micellar Systems - An Overview. In Mittal KL, Fendler EJ (eds) Solution Behavioim of Surfactants, Vol 1. Plemun, New York, p 73... [Pg.186]

Photoinduced electron transfer from eosin and ethyl eosin to Fe(CN)g in AOT/heptane-RMs was studied and the Hfe time of the redox products in reverse micellar system was found to increase by about 300-fold compared to conventional photosystem [335]. The authors have presented a kinetic model for overall photochemical process. Kang et al. [336] reported photoinduced electron transfer from (alkoxyphenyl) triphenylporphyrines to water pool in RMs. Sarkar et al. [337] demonstrated the intramolecular excited state proton transfer and dual luminescence behavior of 3-hydroxyflavone in RMs. In combination with chemiluminescence, RMs were employed to determine gold in aqueous solutions of industrial samples containing silver alloy [338, 339]. Xie et al. [340] studied the a-naphthyl acetic acid sensitized room temperature phosphorescence of biacetyl in AOT-RMs. The intensity of phosphorescence was observed to be about 13 times higher than that seen in aqueous SDS micelles. [Pg.173]

The rate of phase separation after extraction in AOT-RMs is slow [167]. Keeping this in view, there is a need to study in detail the phase separation kinetics of this reverse micellar system in order to evolve means to enhance the phase separation rate. This is a very important aspect as far as industrial adaptability of RME is concerned, since the slower separation rate may become a bottleneck as in the case of ATPE. One possible approach to enhance phase separation is the application of external fields such as electric, acoustic, and microwave to reverse micellar systems. These are shown to enhance the phase separation rate in the case of ATPE [346-348]. Employing reverse micellar systems which phase separate quickly without the need for any external effort could also be a plausible solution. Some examples of such systems are DTDPA-RMs [237], sugar esters DK-F-110 RMs [239], and NaDEHP-RMs [167,243]. [Pg.175]

Medium-chain alcohols such as 2-butoxyethanol (BE) exist as microaggregates in water which in many respects resemble micellar systems. Mixed micelles can be formed between such alcohols and surfactants. The thermodynamics of the system BE-sodlum decanoate (Na-Dec)-water was studied through direct measurements of volumes (flow denslmetry), enthalpies and heat capacities (flow microcalorimetry). Data are reported as transfer functions. The observed trends are analyzed with a recently published chemical equilibrium model (J. Solution Chem. 13,1,1984). By adjusting the distribution constant and the thermodynamic property of the solute In the mixed micelle. It Is possible to fit nearly quantitatively the transfer of BE from water to aqueous NaDec. The model Is not as successful for the transfert of NaDec from water to aqueous BE at low BE concentrations Indicating self-association of NaDec Induced by BE. The model can be used to evaluate the thermodynamic properties of both components of the mixed micelle. [Pg.79]

Most of the studies on thermodynamics of mixed micellar systems are based on the variation of the critical micellar concentration (CMC) with the relative concentration of both components of the mixed micelles (1-4). Through this approach It Is possible to obtain the free energies of formation of mixed micelles. However, at best, the sign and magnitude of the enthalpies and entropies can be obtained from the temperature dependences of the CMC. An Investigation of the thermodynamic properties of transfer of one surfactant from water to a solution of another surfactant offers a promising alternative approach ( ), and, recently, mathematical models have been developed to Interpret such properties (6-9). [Pg.79]

This model was shown to account for the observed trends of enthalpies, volumes, compressibilities and heat capacities of many types of hydrophobic solutes (hydrocarbons, alcohols and surfactants) In micellar solutions and also for the observed trends for the transfer of hydrophobic solutes to some alcohol-water mixtures. This latter observation supports the view that some alcohol-water mixtures exist as microphases which In many respects resemble micellar systems (11-12). [Pg.80]


See other pages where Micellar systems, solute is mentioned: [Pg.148]    [Pg.151]    [Pg.2060]    [Pg.9]    [Pg.442]    [Pg.226]    [Pg.235]    [Pg.49]    [Pg.203]    [Pg.352]    [Pg.207]    [Pg.266]    [Pg.214]    [Pg.136]    [Pg.288]    [Pg.291]    [Pg.88]    [Pg.95]    [Pg.132]    [Pg.147]    [Pg.30]    [Pg.118]    [Pg.128]    [Pg.134]    [Pg.145]    [Pg.174]   


SEARCH



Micellar solutions

Solution systems

© 2024 chempedia.info