Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl isopropyl ketone-xylene

FAAS Metals are directly determined by FAAS metals are determined after chelation with ammonium pyrrolidine dithiocarbamate and extraction in methyl isobutyl ketone and metals are determined after chelation with hexamethyleneammonium-hexamethylenedithiocarbamate and extraction in di-isopropyl ketone-xylene Applicable to natural waters 103... [Pg.292]

CO, CH4, CO2, acetone, ketene. ethene. propene. 1-butene, benzene, toluene, xylene, cydopentene, methyl ethyl ketone, diethyl ketone, methyl-n-propyl ketone, di-n-propyl ketone, methyl vinyl ketone, methyl Isopropenyl ketone, methyl isopropyl ketone, ethyl vinyl ketone, trace amounts of methyl-n-bulyl ketone, cyclopentanone, cydohexanone. acrolein, ethanal. butanal. chain fragments, some monomer CO. CH4, COj, ketene, 1-butene, propene, acetone, methyl ethyl ketone, methyl n-propyl ketone, 1,4-cyclohexadiene. toluene, l-methy. l.3-cydohexadlene, 2-hexanone, cydopentene, 1-methyl cydopentene. mesityl oxide, xylenes, benzene, ethene, cyclopentanone, 1.3-cyclopentad iene, diethyl ketone, short chain fragments, traces of monomer CO, CH4, COi, ketene, 1-butene, propene, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl-n-propyl ketone, diethyl ketone, methyl propenyl ketone, 3-hexanone. toluene, 2-hexanone. 1,3-cydopentadiene, cyclopentanone, 2-melhylcydopenlanone, mesityl oxide, xylenes, benzene, propionaldehyde, acrolein, acetaldehyde ethene, short chain fragments, traces of monomer CO, COj, H2O, CH4. acetone, ketene, ethene, propylene, 1-butene, methyl vinyl ketone, benzene, acrylic add, toluene, xylene, short chain fragments such as dimer to octamer with unsaturated and anhydride functionalities... [Pg.343]

Anhydrous stannous chloride, a water-soluble white soHd, is the most economical source of stannous tin and is especially important in redox and plating reactions. Preparation of the anhydrous salt may be by direct reaction of chlorine and molten tin, heating tin in hydrogen chloride gas, or reducing stannic chloride solution with tin metal, followed by dehydration. It is soluble in a number of organic solvents (g/100 g solvent at 23°C) acetone 42.7, ethyl alcohol 54.4, methyl isobutyl carbinol 10.45, isopropyl alcohol 9.61, methyl ethyl ketone 9.43 isoamyl acetate 3.76, diethyl ether 0.49, and mineral spirits 0.03 it is insoluble in petroleum naphtha and xylene (2). [Pg.64]

SO as to end the air mixture to adsorber No. 2. The system is then fully automatic. Solvents which have been successfully recovered by the activated carbon adsorption method include methanol, ethanol, butanol, chlorinated hydrocarbons including perchlorethylene, which boils at 121 C (250 °F), ethyl ether, isopropyl ether, the acetates up to amyl acetate, benzene, toluene, xylene, mineral spirits, naphtha, gasoline, acetone, methyl ethyl ketone, hexane, carbon disulfide, and others. [Pg.301]

Baeyer-VilUger oxidation. The BuO-Cu(III)-NO species formed on heating Cut with BU4NNO2 in o-xylene at 150° converts aryl isopropyl ketones and aryl trifluoromethyl ketones to hutyl esters. However, the scope of this reaction is limited, ethyl and methyl ketones give low yields of the corresponding esters and phenyl and r-butyl ketones are not oxidized at all under such conditions. ... [Pg.183]

Table 11.13. Ethyl Acetate, Isopropyl Acetate, Acetone, Butyl Acetate, Toluene, Xylene, Methyl Isobutyl Ketone, and Methyl Ethyl Ketone Permeability through Fluorinated Polyethylene Bottles... Table 11.13. Ethyl Acetate, Isopropyl Acetate, Acetone, Butyl Acetate, Toluene, Xylene, Methyl Isobutyl Ketone, and Methyl Ethyl Ketone Permeability through Fluorinated Polyethylene Bottles...
Penetrant ethyl acetate isopropyl acetate acetone butyl acetate toluene xylene methyl isobutyl ketone methyl ethyl ketone... [Pg.418]

The solubility of PLA is dependent on the molar weight and the crystallinity degree of the polymer. For the enantiopure PLA, chloroform and other chlorinated organic solvents, such as furan, dioxane, dioxolane and pyridine are good solvents. In addition to these organic solvents, the non-enantiopure PLA is soluble in ethyl acetate, dimethylsulfoxide, tetrahydrofuran, acetone, xylene, methyl ethyl ketone, ethyl lactate and dimethylformamide. However, lactic acid based polymers are not soluble in water, alcohol (e.g. ethanol, methanol), isopropyl ether, or unsubstituted hydrocarbons (e.g. cyclohexane, heptane) [19]. [Pg.190]

Nitrocellulose, polyester, acrylic and methacrylic ester copolymer, formaldehyde resin, rosin, cellulose acetate butyrate are the most frequently used polymers in nail polish formulations. Solvents were selected to suit the polymer used. These include acetone, methyl acetate, ethyl acetate, butyl acetate, methyl glycol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, isopropyl alcohol, methyl chloroform, and naphtha. Solvents constitute a substantial Ifaction of the composition usually around 70%. Reformulation is ongoing to improve the flexibility and durability of the nail polish. Other efforts are directed to improve antifungal properties,to eliminate ketones and formaldehyde resin (ketones because of their toxicity and irritating smell and formaldehyde resins because they contribute to dermatitis), and elimination of yellowing. All efforts are di-... [Pg.881]

FIGURE 7 Generic solvent-exchange method, direct injection GC/FID. From bottom to top blank injection and GC volatiles test solution. Peaks I, methanol 2, n-pentane 3, ethanol 4, acetone 5 isopropyl alcohol 6, acetonitrile 7, methyl acetate 8, methylene chloride 9 methyl tertiary butyl ether 10, n-hexane 11, propanol 12, methyl ethyl ketone 13, ethyl acetate 14, sec-butanol 15, tetrahydrofuran 16, cyclohexane 17, hexamethyidisiloxane 18, benzene 19, n-heptane 20, butyl alcohol 21, 1,4-dioxane 22, methyl isobutyl ketone 23, pyridine 24, toluene 25, isobutyl acetate 26, n-butyl acetate 27, p-xylene 28, dimethylacetamide 29, solvent impurities. [Pg.412]

EINECS 203-468-6, see Ethylenediamine EINECS 203-470-7, see Allyl alcohol EINECS 203-472-8, see Chloroacetaldehyde EINECS 203-481-7, see Methyl formate EINECS 203-523-4, see 2-Methylpentane EINECS 203-528-1, see 2-Pentanone EINECS 203-544-9, see 1-Nitropropane EINECS 203-545-4, see Vinyl acetate EINECS 203-548-0, see 2,4-Dimethylpentane EINECS 203-550-1, see 4-Methyl-2-pentanone EINECS 203-558-5, see Diisopropylamine EINECS 203-560-6, see Isopropyl ether EINECS 203-561-1, see Isopropyl acetate EINECS 203-564-8, see Acetic anhydride EINECS 203-571-6, see Maleic anhydride EINECS 203-576-3, see m-Xylene EINECS 203-598-3, see Bis(2-chloroisopropyl) ether EINECS 203-604-4, see 1,3,5-Trimethylbenzene EINECS 203-608-6, see 1,3,5-Trichlorobenzene EINECS 203-620-1, see Diisobutyl ketone EINECS 203-621-7, see sec-Hexyl acetate EINECS 203-623-8, see Bromobenzene EINECS 203-624-3, see Methylcyclohexane EINECS 203-625-9, see Toluene EINECS 203-628-5, see Chlorobenzene EINECS 203-630-6, see Cyclohexanol EINECS 203-632-7, see Phenol EINECS 203-686-1, see Propyl acetate EINECS 203-692-4, see Pentane EINECS 203-694-5, see 1-Pentene EINECS 203-695-0, see cis-2-Pentene EINECS 203-699-2, see Butylamine EINECS 203-713-7, see Methyl cellosolve EINECS 203-714-2, see Methylal EINECS 203-716-3, see Diethylamine EINECS 203-721-0, see Ethyl formate EINECS 203-726-8, see Tetrahydrofuran EINECS 203-729-4, see Thiophene EINECS 203-767-1, see 2-Heptanone EINECS 203-772-9, see Methyl cellosolve acetate EINECS 203-777-6, see Hexane EINECS 203-799-6, see 2-Chloroethyl vinyl ether EINECS 203-804-1, see 2-Ethoxyethanol EINECS 203-806-2, see Cyclohexane EINECS 203-807-8, see Cyclohexene EINECS 203-809-9, see Pyridine EINECS 203-815-1, see Morpholine EINECS 203-839-2, see 2-Ethoxyethyl acetate EINECS 203-870-1, see Bis(2-chloroethyl) ether EINECS 203-892-1, see Octane EINECS 203-893-7, see 1-Octene EINECS 203-905-0, see 2-Butoxyethanol EINECS 203-913-4, see Nonane EINECS 203-920-2, see Bis(2-chloroethoxy)methane EINECS 203-967-9, see Dodecane EINECS 204-066-3, see 2-Methylpropene EINECS 204-112-2, see Triphenyl phosphate EINECS 204-211-0, see Bis(2-ethylhexyl) phthalate EINECS 204-258-7, see l,3-Dichloro-5,5-dimethylhydantoin... [Pg.1482]

Some form of activated carbon is used in these processes rather than silica- and alumina-base adsorbents, because of carbon s selectivity for organic vapors in the presence of water. Typical solvents, which can be recovered from air streams by activated carbon, include hydrocarbons such as naphtha or petroleum ether methyl, ethyl, isopropyl, butyl, and other alcohols chlorinated hydrocarbons such as carbon tetrachloride, ethylene dichloride, and propylene dichloridc esters. such as methyl, ethyl, isopropyl, butyl, and amyl acetate acetone and other ketones ethers aromatic hydrocarbons such as benzene, toluene, and xylene carbon disulfide, and many other compounds. [Pg.1093]


See other pages where Methyl isopropyl ketone-xylene is mentioned: [Pg.93]    [Pg.93]    [Pg.311]    [Pg.275]    [Pg.29]    [Pg.29]    [Pg.29]    [Pg.301]    [Pg.403]    [Pg.28]    [Pg.31]    [Pg.1603]    [Pg.1604]    [Pg.33]    [Pg.33]    [Pg.691]    [Pg.43]    [Pg.505]    [Pg.677]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Isopropyl ketones

Ketones methyl isopropyl ketone

Methyl isopropyl ketone

© 2024 chempedia.info