Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol natural emission

Although liquid hydrogen, LH2, can be used as a fuel source, much of the recent fuel cell research is focusing on the partial oxidation of methanol, natural gas, ethanol, or gasoline to produce the necessary hydrogen. Catalysts that aid in the partial oxidation of these fuels yields a readily available, rich source of hydrogen. Water is the primary exhaust emission produced by fuel cell powered vehicles. If a carbon-based fuel source is utilized, then a carbon-containing by-product will also be produced. [Pg.307]

Methanol, a clean burning fuel relative to conventional industrial fuels other than natural gas, can be used advantageously in stationary turbines and boilers because of its low flame luminosity and combustion temperature. Low NO emissions and virtually no sulfur or particulate emissions have been observed (83). Methanol is also considered for dual fuel (methanol plus oil or natural gas) combustion power boilers (84) as well as to fuel gas turbines in combined methanol / electric power production plants using coal gasification (85) (see Power generation). [Pg.88]

In the United States, in particular, recent legislation has mandated sweeping improvements to urban air quality by limiting mobile source emissions and by promoting cleaner fuels. The new laws require commercial and government fleets to purchase a substantial number of vehicles powered by an alternative fuel, such as natural gas, propane, electricity, methanol or ethanol. However, natural gas is usually preferred because of its lower cost and lower emissions compared with the other available alternative gas or liquid fuels. Even when compared with electricity, it has been shown that the full fuel cycle emissions, including those from production, conversion, and transportation of the fuel, are lower for an NGV [2]. Natural gas vehicles offer other advantages as well. Where natural gas is abundantly available as a domestic resource, increased use... [Pg.269]

Compared with other alternative motor fuel options (reformulated gasoline, compressed or liquefied natural gas, ethanol from corn or coal, methanol and electricity), propane has the lowest greenhouse gas emissions except for natural gas. According to a 1998 study by the Institute of Transportation Studies, greenhouse emissions from propane vehicles arc 21.8 percent less than from gasoline or diesel. [Pg.722]

Other energy sector concerns are methane emissions from unburned fuel, and from natural gas leaks at various stages of natural gas production, transmission and distribution. The curtailment of venting and flaring stranded gas (remotely located natural gas sources that are not economical to produce liquefied natural gas or methanol), and more efficient use of natural gas have significantly reduced atmospheric release. But growth in natural gas production and consumption may reverse this trend. Methane has... [Pg.793]

Many GTL-derived fuels are being considered for blending with gasoline and diesel to achieve emission reductions of particulate matter (PM), carbon monoxide (CO), nitrogen compounds (NOx) and nonmethane hydrocarbons (NMHC). The most promising fuels converted from natural gas are methanol and ethers such as dimethyl ether (DME) and mcthyl-t-bntyl ether (MTBE). [Pg.834]

Fig. 9.13 Absorption spectrum of one of the luciferin precursors of Mycena cit-ricolor in methanol (dash-dot line, A.max 369 nm). The absorption and fluorescence emission spectra of the decylamine-activation product of the same precursor in neutral aqueous solution (solid lines abs. Amax 372 nm and fl. Xmax 460 nm), and in ethanol (broken lines abs. Amax 375 nm and fl. Amax 522 nm). The chemiluminescence spectrum of the same activation product (dotted line, A.max 580 nm). The dotted line (7max 320 nm) is the absorption spectrum of M. citricolor natural luciferin reported by Kuwabara and Wassink (1966). Fig. 9.13 Absorption spectrum of one of the luciferin precursors of Mycena cit-ricolor in methanol (dash-dot line, A.max 369 nm). The absorption and fluorescence emission spectra of the decylamine-activation product of the same precursor in neutral aqueous solution (solid lines abs. Amax 372 nm and fl. Xmax 460 nm), and in ethanol (broken lines abs. Amax 375 nm and fl. Amax 522 nm). The chemiluminescence spectrum of the same activation product (dotted line, A.max 580 nm). The dotted line (7max 320 nm) is the absorption spectrum of M. citricolor natural luciferin reported by Kuwabara and Wassink (1966).
Steinberg, M., Production of hydrogen and methanol from natural gas with reduced C02 emission, Int. J. Hydrogen Energ., 23, 419, 1998. [Pg.101]

Dong, Y. Steinberg, M., Hynol—an economical process for methanol production from biomass and natural gas with reduced C02 emission. In 10th World Hydrogen Energy Conference, Block, D. L., Veziroglu, T. N. Eds., Beach, Florida, June 20-24,1994, pp. 495-504. [Pg.224]

Chapter one is an overview of the energy evolution. It introduces the technology and emission issues, safety, and alternative fuels such as natural gas, hydrogen gas, methanol, ethanol and fuel cell power. [Pg.8]

Methanol also seems to biodegrade quickly when spilled and it dissolves and dilutes rapidly in water. It has been recommended as an alternative fuel by the EPA and the DOE, partly because of reduced urban air pollutant emissions compared to gasoline. Most methanol-fueled vehicles use a blend of 85% methanol and 15% gasoline called M85. Building a methanol infrastructure would not be as difficult as converting to hydrogen. While methanol can be produced from natural gas, it can also be distilled from coal or even biomass. In the 1980s, methanol was popular for a brief time as an internal-combustion fuel and President Bush even discussed this in a 1989 speech. [Pg.85]

FIGURE 16.42 Measured emissions of (a) particles (PM) and (b) NO, from more than 300 buses and heavy-duty trucks running on compressed natural gas (CNG), two diesel fuels, or alcohol fuels (E93, E95, and M100). The bars are the means and the boxes encompass the 95% confidence intervals. E93 = 93% ethanol, 5% methanol, 2% K-l kerosene E95 = 95% ethanol, 5% gasoline M100 = 100% methanol (adapted from Wang et al., 1997). [Pg.923]

Change-transfer complexes of solute-alcohol stoichiometry 1 2 have been reported by Walker, Bednar, and Lumry3 for indole and certain methyl derivatives (M) in mixtures of associating solvents n-butanol and methanol (Q) with n-pentane these authors introduced the term exciplex to describe the emitter of the red-shifted structureless fluorescence band which increases in intensity with the alcohol content of the mixed solvent. The shift of the exciplex band to longer wavelengths as the solvent polarity is increased, described by Eq. (15), confirms the dipolar nature of the complex that must have the structure M+Q2. No emission corresponding to the 1 1 complex is observed in these systems which indicates (but does not prove) that the photo-association involves the alcohol dimer. The complex stoichiometry M+Q determined from (Eqs. 9, 10, and 12)... [Pg.177]


See other pages where Methanol natural emission is mentioned: [Pg.187]    [Pg.3]    [Pg.72]    [Pg.434]    [Pg.347]    [Pg.386]    [Pg.480]    [Pg.533]    [Pg.766]    [Pg.795]    [Pg.915]    [Pg.455]    [Pg.83]    [Pg.149]    [Pg.257]    [Pg.410]    [Pg.163]    [Pg.200]    [Pg.572]    [Pg.40]    [Pg.278]    [Pg.48]    [Pg.233]    [Pg.105]    [Pg.442]    [Pg.911]    [Pg.1119]    [Pg.222]    [Pg.583]    [Pg.587]    [Pg.347]    [Pg.1087]    [Pg.480]    [Pg.10]    [Pg.11]   
See also in sourсe #XX -- [ Pg.238 ]




SEARCH



Emissions natural

Methanol nature

© 2024 chempedia.info