Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol ketones

Fig. L Carbon tetrachloride -f Methanol (35°C) against the mole fraction of methanol. Ketone and nitrile solutions in water (against the mole fraction of water) behave... Fig. L Carbon tetrachloride -f Methanol (35°C) against the mole fraction of methanol. Ketone and nitrile solutions in water (against the mole fraction of water) behave...
Rodeheaver and Hunt also studied the use of oxymercurials to give oxidation products with Pd(II) in alcohols (227). Interestingly, in methanol, ketones were formed rather than the expected vinyl ethers or dimethyl acetate ... [Pg.398]

Oxygenated, sulfide (acetaidehyde, acrolein, butyl acetate, butyl alcohol, CS2, rayon, ether, ethyl acetate, furfural, glycerine, methanol, ketones, sorbitol, vinyl acetate)... [Pg.66]

Forfflaldehyde 2 245 119 - G - - plus 0.2 percent formic acid, methanol, ketones and other aldehydes. 138-day test with agitation and no aeration... [Pg.684]

Polyvinyl acetate Aromatic and chlorinated hydrocarbons, methanol, ketones Gasoline... [Pg.139]

Brady s reagent A solution of 2,4-dinitro-phenylhydrazine sulphate in methanol. Gives characteristic crystalline yellow to deep red 2,4-dinitrophenylhydrazone products with aldehydes and ketones. [Pg.66]

Esters of the homologous acids are prepared by adding silver oxide in portions rather than in one lot to a hot solution or suspension of the diazo ketone in an anhydrous alcohol (methyl, ethyl or n-propyl alcohol) methanol is generally used and the silver oxide is reduced to metallic silver, which usually deposits as a mirror on the sides of the flask. The production of the ester may frequently be carried out in a homogeneous medium by treating a solution of the diazo ketone in the alcohol with a solution of silver benzoate in triethylamlne. [Pg.903]

Science dealerships aren t the only places to get the stuff one needs. At those mega hardware stores one can find pure acetone, methanol, ethanol, toluene, methyl ethyl ketone, DCM(as a constituent of some stripping agents), sodium hydroxide in the form of lye, and some acids such as sulfuric and hydrochloric. These precious tools can be bought there cheaply and in great quantity. [Pg.13]

This procedure has been tested for a lot of bees and conditions are similar. Displl solvent and distill ketone with a water pump. My yield, 41 grams, about 75 %. Scaling. Of course. This procedure have been done with 150 cc of safrol, but with T75 I of methanol with simiair yields, so I ve prefered to present this version wich is better (less solvent, less time) Addition of nitrite i/vas done in 2,5 hours. When scaling, water in B can be decreased if we have problems with our volume flasks, but this means a lot of NaN02 is not dissolved, so each 15 minutes, we close sep. funnel, and shake B a bit, and when there is no foam, we can open sep. funnel again (1 drop or abit more /second). My opinion is 150 is ok, but theorically you can scale more. More time rxn is not a problem for product. [Pg.86]

Many low molecular weight aldehydes and ketones are important industrial chem icals Formaldehyde a starting material for a number of plastics is prepared by oxida tion of methanol over a silver or iron oxide/molybdenum oxide catalyst at elevated temperature... [Pg.711]

Perchloric acid Acetic acid, acetic anhydride, alcohols, antimony compounds, azo pigments, bismuth and its alloys, methanol, carbonaceous materials, carbon tetrachloride, cellulose, dehydrating agents, diethyl ether, glycols and glycolethers, HCl, HI, hypophosphites, ketones, nitric acid, pyridine, steel, sulfoxides, sulfuric acid... [Pg.1211]

With aldehydes, primary alcohols readily form acetals, RCH(OR )2. Acetone also forms acetals (often called ketals), (CH2)2C(OR)2, in an exothermic reaction, but the equiUbrium concentration is small at ambient temperature. However, the methyl acetal of acetone, 2,2-dimethoxypropane [77-76-9] was once made commercially by reaction with methanol at low temperature for use as a gasoline additive (5). Isopropenyl methyl ether [116-11-OJ, useful as a hydroxyl blocking agent in urethane and epoxy polymer chemistry (6), is obtained in good yield by thermal pyrolysis of 2,2-dimethoxypropane. With other primary, secondary, and tertiary alcohols, the equiUbrium is progressively less favorable to the formation of ketals, in that order. However, acetals of acetone with other primary and secondary alcohols, and of other ketones, can be made from 2,2-dimethoxypropane by transacetalation procedures (7,8). Because they hydroly2e extensively, ketals of primary and especially secondary alcohols are effective water scavengers. [Pg.94]

It has been known since the early 1950s that butadiene reacts with CO to form aldehydes and ketones that could be treated further to give adipic acid (131). Processes for producing adipic acid from butadiene and carbon monoxide [630-08-0] have been explored since around 1970 by a number of companies, especially ARCO, Asahi, BASF, British Petroleum, Du Pont, Monsanto, and Shell. BASF has developed a process sufficiendy advanced to consider commercialization (132). There are two main variations, one a carboalkoxylation and the other a hydrocarboxylation. These differ in whether an alcohol, such as methanol [67-56-1is used to produce intermediate pentenoates (133), or water is used for the production of intermediate pentenoic acids (134). The former is a two-step process which uses high pressure, >31 MPa (306 atm), and moderate temperatures (100—150°C) (132—135). Butadiene,... [Pg.244]

In the early 1920s Badische Arulin- und Soda-Fabrik aimounced the specific catalytic conversion of carbon monoxide and hydrogen at 20—30 MPa (200—300 atm) and 300—400°C to methanol (12,13), a process subsequendy widely industrialized. At the same time Fischer and Tropsch aimounced the Synth in e process (14,15), in which an iron catalyst effects the reaction of carbon monoxide and hydrogen to produce a mixture of alcohols, aldehydes (qv), ketones (qv), and fatty acids at atmospheric pressure. [Pg.79]

In petroleum and oxygenate finish removers, the major ingredient is normally acetone, methyl ethyl ketone [78-93-3], or toluene. Cosolvents include methanol, / -butanol [71-36-3], j -butyl alcohol [78-92-2], or xylene [1330-20-7]. Sodium hydroxide or amines are used to activate the remover. Paraffin wax is used as an evaporation retarder though its effectiveness is limited because it is highly soluble in the petroleum solvents. CeUulose thickeners are sometimes added to liquid formulas to assist in pulling the paraffin wax from the liquid to form a vapor barrier or to make a thick formula. Corrosion inhibitors are added to stabili2e tbe formula for packaging (qv). [Pg.551]

Quinone Methides. The reaction between aldehydes and alkylphenols can also be base-cataly2ed. Under mild conditions, 2,6-DTBP reacts with formaldehyde in the presence of a base to produce the methylol derivative (22) which reacts further with base to eliminate a molecule of water and form a reactive intermediate, the quinone methide (23). Quinone methides undergo a broad array of transformations by way of addition reactions. These molecules ate conjugated homologues of vinyl ketones, but are more reactive because of the driving force associated with rearomatization after addition. An example of this type of addition is between the quinone methide and methanol to produce the substituted ben2yl methyl ether (24). [Pg.61]

Amin omethyl-3,5,5-trimethyl cyclohexyl amine (21), commonly called isophoronediamine (IPD) (51), is made by hydrocyanation of (17) (52), (53) followed by transformation of the ketone (19) to an imine (20) by dehydrative condensation of ammonia (54), then concomitant hydrogenation of the imine and nitrile functions at 15—16 MPa (- 2200 psi) system pressure and 120 °C using methanol diluent in addition to YL NH. Integrated imine formation and nitrile reduction by reductive amination of the ketone leads to alcohol by-product. There are two geometric isomers of IPD the major product is ds-(22) [71954-30-5] and the minor, tram-(25) [71954-29-5] (55). [Pg.210]

When sublimed, anthraquinone forms a pale yeUow, crystalline material, needle-like in shape. Unlike anthracene, it exhibits no fluorescence. It melts at 286°C and boils at 379°—381°C. At much higher temperatures, decomposition occurs. Anthraquinone has only a slight solubiUty in alcohol or benzene and is best recrystallized from glacial acetic acid or high boiling solvents such as nitrobenzene or dichlorobenzene. It is very soluble in concentrated sulfuric acid. In methanol, uv absorptions of anthraquinone are at 250 nm (e = 4.98), 270 nm (4.5), and 325 nm (4.02) (4). In the it spectmm, the double aUyflc ketone absorbs at 5.95 p.m (1681 cm ), and the aromatic double bond absorbs at 6.25 p.m (1600 cm ) and 6.30 pm (1587 cm ). [Pg.420]

SuIfona.tlon, Sulfonation is a common reaction with dialkyl sulfates, either by slow decomposition on heating with the release of SO or by attack at the sulfur end of the O—S bond (63). Reaction products are usually the dimethyl ether, methanol, sulfonic acid, and methyl sulfonates, corresponding to both routes. Reactive aromatics are commonly those with higher reactivity to electrophilic substitution at temperatures > 100° C. Tn phenylamine, diphenylmethylamine, anisole, and diphenyl ether exhibit ring sulfonation at 150—160°C, 140°C, 155—160°C, and 180—190°C, respectively, but diphenyl ketone and benzyl methyl ether do not react up to 190°C. Diphenyl amine methylates and then sulfonates. Catalysis of sulfonation of anthraquinone by dimethyl sulfate occurs with thaHium(III) oxide or mercury(II) oxide at 170°C. Alkyl interchange also gives sulfation. [Pg.200]

Appllca.tlons. MCA is used for the resolution of many classes of chiral dmgs. Polar compounds such as amines, amides, imides, esters, and ketones can be resolved (34). A phenyl or a cycloalkyl group near the chiral center seems to improve chiral selectivity. Nonpolar racemates have also been resolved, but charged or dissociating compounds are not retained on MCA. Mobile phases used with MCA columns include ethanol and methanol. [Pg.100]

In the petroleum (qv) industry hydrogen bromide can serve as an alkylation catalyst. It is claimed as a catalyst in the controlled oxidation of aHphatic and ahcycHc hydrocarbons to ketones, acids, and peroxides (7,8). AppHcations of HBr with NH Br (9) or with H2S and HCl (10) as promoters for the dehydrogenation of butene to butadiene have been described, and either HBr or HCl can be used in the vapor-phase ortho methylation of phenol with methanol over alumina (11). Various patents dealing with catalytic activity of HCl also cover the use of HBr. An important reaction of HBr in organic syntheses is the replacement of aHphatic chlorine by bromine in the presence of an aluminum catalyst (12). Small quantities of hydrobromic acid are employed in analytical chemistry. [Pg.291]

Secondary alcohols are oxidized at room temperature to ketones in high yields by HOCl generated in situ from aqueous NaOCl and acetic acid (109,110). Selective oxidation in the presence of a primary alcohol is possible. In methanol, aldehydes are oxidized to methyl esters (110). Under the proper conditions, alcohols can be esterified with HOCl forming isolable alkyl hypochlorites. [Pg.468]

Methyl ethyl ketone Higher ketones Methanol Motor alcohol Ethanol... [Pg.290]

Cyclohexanoae is miscible with methanol, ethanol, acetone, benzene, / -hexane, nitrobenzene, diethyl ether, naphtha, xylene, ethylene glycol, isoamyl acetate, diethylamine, and most organic solvents. This ketone dissolves cellulose nitrate, acetate, and ethers, vinyl resias, raw mbber, waxes, fats, shellac, basic dyes, oils, latex, bitumea, kaure, elemi, and many other organic compounds. [Pg.425]

The gum is soluble in lower ketones and esters, amide solvents, methanol, and tetrahydrofuran. [Pg.526]


See other pages where Methanol ketones is mentioned: [Pg.1644]    [Pg.524]    [Pg.1644]    [Pg.524]    [Pg.18]    [Pg.163]    [Pg.852]    [Pg.978]    [Pg.132]    [Pg.180]    [Pg.845]    [Pg.274]    [Pg.494]    [Pg.505]    [Pg.360]    [Pg.162]    [Pg.52]    [Pg.438]    [Pg.461]    [Pg.529]    [Pg.292]    [Pg.186]    [Pg.189]    [Pg.528]    [Pg.84]    [Pg.182]    [Pg.36]   
See also in sourсe #XX -- [ Pg.199 , Pg.199 ]




SEARCH



© 2024 chempedia.info