Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methane reactions for

Figure 7.8 Equilibrium curves (dotted lines) for the WGS reaction with or without methanation reaction for feed gas composition with 50% H2. The filled squares and circles are CO conversions over G-66 A and Cu02Ce08O2 y, catalysts, respectively. The solid lines are model fits assuming first-order reversible kinetics. (Reprinted from [51], With permission from Elsevier.)... Figure 7.8 Equilibrium curves (dotted lines) for the WGS reaction with or without methanation reaction for feed gas composition with 50% H2. The filled squares and circles are CO conversions over G-66 A and Cu02Ce08O2 y, catalysts, respectively. The solid lines are model fits assuming first-order reversible kinetics. (Reprinted from [51], With permission from Elsevier.)...
A recent investigation [5-7] of the oxygen-methane reaction for synthesis gas production addressed the effect of various monolith designs on catalyst control of the reaction rate and temperatures. Catalyst bed geometry and gas flow rates strongly affect mass transfer at the catalyst boundary layer and, therefore, the selectivities of fast reactions... [Pg.182]

Wu, S., Beum, T.H., Yang, J.I., and Kim, J.N. The characteristics of a sorption-enhanced steam-methane reaction for the production of hydrogen using C02 Sorbent. Chinese Journal of Chemical Engineering, 2005, 13 (1), 43. [Pg.116]

Effect of ruthenium content. Rossetti studied the the methane concentration at the methanation reaction for ruthenium contents being 1.9% and 8.9% Ru/AC (Fig. 6.72). The supports are graphitized activated carbon with BET>250m /g, total pore volume of 0.4cm /g, micropore volume of 0.07cm /g. The ruthenium... [Pg.527]

Pig. 6.81 Scheme of mechanism of methanation reaction for activated carbon... [Pg.535]

Only 20—40% of the HNO is converted ia the reactor to nitroparaffins. The remaining HNO produces mainly nitrogen oxides (and mainly NO) and acts primarily as an oxidising agent. Conversions of HNO to nitroparaffins are up to about 20% when methane is nitrated. Conversions are, however, often ia the 36—40% range for nitrations of propane and / -butane. These differences ia HNO conversions are explained by the types of C—H bonds ia the paraffins. Only primary C—H bonds exist ia methane and ethane. In propane and / -butane, both primary and secondary C—H bonds exist. Secondary C—H bonds are considerably weaker than primary C—H bonds. The kinetics of reaction 6 (a desired reaction for production of nitroparaffins) are hence considerably higher for both propane and / -butane as compared to methane and ethane. Experimental results also iadicate for propane nitration that more 2-nitropropane [79-46-9] is produced than 1-nitropropane [108-03-2]. Obviously the hydroxyl radical attacks the secondary bonds preferentially even though there are more primary bonds than secondary bonds. [Pg.36]

The methanation reaction is carried out over a catalyst at operating conditions of 503—723 K, 0.1—10 MPa (1—100 atm), and space velocities of 500—25,000 h . Although many catalysts are suitable for effecting the conversion of synthesis gas to methane, nickel-based catalysts are are used almost exclusively for industrial appHcations. Methanation is extremely exothermic (AT/ qq = —214.6 kJ or —51.3 kcal), and heat must be removed efficiently to minimise loss of catalyst activity from metal sintering or reactor plugging by nickel carbide formation. [Pg.52]

The methanation reaction is currently used to remove the last traces (<1%) of carbon monoxide and carbon dioxide from hydrogen to prevent poisoning of catalysts employed for subsequent hydrogenation reactions. Processes for conversion of synthesis gas containing large quantities of carbon monoxide (up to 25%) into synthetic natural gas have been investigated to serve plants based on coal-suppHed synthesis gas. [Pg.52]

The latter reaction is an example of the di-n-methane rearrangement This rearrangement is a very general reaction for 1,4-dienes and other systems that have two n systems separated by an -hybridized earbon atom ... [Pg.776]

The reaction produces additional hydrogen for ammonia synthesis. The shift reactor effluent is cooled and tlie condensed water is separated. The gas is purified by removing carbon dioxide from the synthesis gas by absorption with hot carbonate, Selexol, or methyl ethyl amine (MEA). After purification, the remaining traces of carbon monoxide and carbon dioxide are removed in the methanation reactions. [Pg.1126]

The chemical reactions that occnr in flames transform an initial reactant mixtnre into final reaction prodncts. In the case of fnel-oxygen combns-tion, the final prodncts are principally water vapor and carbon dioxide, althongh nnmerons other prodncts snch as carbon monoxide may be formed, depending on the reactant composition and other factors. If the ratio of fnel-to-oxygen is stoichiometric, the final reaction prodncts, by definition, contain no excess fnel or oxygen. Theoretically, this means that partial oxidation prodncts snch as CO (itself a fnel) are not formed. In reality, partial oxidation prodncts snch as CO or OH are formed by high tem-peratnre reactions. For example, the molar stoichiometric reaction of methane is written ... [Pg.52]

Steam-Moderated Process. The basic idea behind this approach is to limit the extent of conversion of the methanation reaction, Reaction 1, by adding steam to the feed gases. This process simultaneously provides for (46) elimination of the CO shift, Reaction 2, to get a 3 1 H2 CO ratio from the make-up gas ratio of about 1.5 1 and avoidance of carbon laydown by operation under conditions in which carbon is not a thermodynamically stable phase (see Chemistry and Thermodynamics section above). [Pg.36]

For the methanation reaction in the process of converting coal to a high Btu gas, various catalyst compositions were evaluated in order to determine the optimum type catalyst. From this study, a series of catalysts were developed for studying the effect of nickel content on catalyst activity. This series included both silica- and alumina-based catalysts, and the nickel content was varied (Table I). [Pg.57]

The catalysts were reduced with 100% H2 at 371 °C and an inlet space velocity of 1000/hr. Because of the carbon-forming potential of a dry gas recycle composition and the cost of reheating the recycle if the water produced by the methanation reaction is removed, a wet gas recycle composition was used. The catalyst loading, gas composition, and test conditions for these tests are listed in Table II, and the effects of nickel content are compared in Table III. [Pg.58]

An examination of some laboratory runs with diluted C150-1-02 catalyst can illustrate this problem. In one run with 304°C at inlet, 314 °C at exit, and 97,297 outlet dry gas space velocity, the following results were obtained after minor corrections for analytical errors. Of the CO present (out of an inlet 2.04 mole % ), 99.9885% disappeared in reaction while the C02 present (from an initial 1.96%) increased by over 30%. Equilibrium carbon oxides for both methanation reactions were essentially zero whereas the equilibrium CO based on the water-gas shift reaction at the exit composition was about one-third the actual CO exit of 0.03 mole %. From these data, activities for the various reactions may be estimated on the basis of various assumptions (see Table XIX for the effect of two different assumptions). [Pg.77]

The methanation process commonly operates at pressures up to 30 atm, and, with the nickel catalyst which is almost universally used for the process, the inlet temperature is about 300°C ( 570°F). Almost complete conversion of the oxides of carbon occurs giving a product synthesis gas containing less than 5 ppm CO + C02. The temperature rise for the exothermic methanation reactions is typically 35 °C (63°F). [Pg.80]

For SNG manufacture, it is necessary to reduce the residual hydrogen to a minimum in order to achieve a high calorific value. This is best realized if the synthesis gas, instead of having a stoichiometric composition, contains a surplus of C02 which can be utilized to reduce the H2 content by the C02 methanation reaction to less than 1% according to equilibrium conditions. The surplus C02 must be removed at the end of the process sequence. It is, of course, also possible to operate a methanation plant with synthesis gas of stoichiometric composition then there is no need for a final C02 removal system. The residual H2 content will be higher, and therefore the heating value will be lower (cf. the two long term runs in Table II). [Pg.126]

The hydrogasification reactor operates at pressures of 1000-1500 psig and at temperatures of 760°-982°C in order to obtain the proper reaction rates and yields of methane required for process optimization. About 50% of the feed carbon is converted to gases in the hydrogasifier. [Pg.133]

Feed gases to most, if not all, methanation systems for substitute natural gas (SNG) production are theoretically capable of forming carbon. This potential also exists for feed gases to all first-stage shift converters operating in ammonia plants and in hydrogen production plants. However, it has been demonstrated commercially over a period of many years that carbon formation at inlet temperatures in shift converters is a relatively slow reaction and that, once shifted, the gas loses its potential for carbon formation. Carbon formation has not been a common problem at the inlet to shift converters. It has been no problem at all in our bench-scale work, and it is not expected to be a problem in our pilot plant operations. [Pg.154]

The thermodynamic properties of a chemical substance are dependent upon its state and, therefore, it is important to indicate conditions when writing chemical reactions. For example, in the burning of methane to form carbon dioxide and water, it is important to specify whether each reactant and product are solid, liquid, or gaseous since different changes in the thermodynamic property will occur depending upon the state of each substance. Thus, different volume and energy changes occur in the reactions... [Pg.7]

It is obvious that one can use the basic ideas concerning the effect of alkali promoters on hydrogen and CO chemisorption (section 2.5.1) to explain their effect on the catalytic activity and selectivity of the CO hydrogenation reaction. For typical methanation catalysts, such as Ni, where the selectivity to CH4 can be as high as 95% or higher (at 500 to 550 K), the modification of the catalyst by alkali metals increases the rate of heavier hydrocarbon production and decreases the rate of methane formation.128 Promotion in this way makes the alkali promoted nickel surface to behave like an unpromoted iron surface for this catalytic action. The same behavior has been observed in model studies of the methanation reaction on Ni single crystals.129... [Pg.79]

The influence of electronegative additives on the CO hydrogenation reaction corresponds mainly to a reduction in the overall catalyst activity.131 This is shown for example in Fig. 2.42 which compares the steady-state methanation activities of Ni, Co, Fe and Ru catalysts relative to their fresh, unpoisoned activities as a function of gas phase H2S concentration. The distribution of the reaction products is also affected, leading to an increase in the relative amount of higher unsaturated hydrocarbons at the expense of methane formation.6 Model kinetic studies of the effect of sulfur on the methanation reaction on Ni(lOO)132,135 and Ru(OOl)133,134 at near atmospheric pressure attribute this behavior to the inhibition effect of sulfur to the dissociative adsorption rate of hydrogen but also to the drastic decrease in the... [Pg.81]

Sometimes we need to construct a balanced chemical equation from the description of a reaction. For example, methane, CH4, is the principal ingredient of natural gas (Fig. H.3). It burns in oxygen to form carbon dioxide and water, both formed initially as gases. To write the balanced equation for the reaction, we first write the skeletal equation ... [Pg.87]

Fig. 17.7), is therefore the nucleus of an atom of a different element. For example, when a radon-222 nucleus emits an a particle, a polonium-218 nucleus is formed. In this case, a nuclear transmutation, the conversion of one element into another, has taken place. Another important difference between nuclear and chemical reactions is that energy changes are very much greater for nuclear reactions than for chemical reactions. For example, the combustion of 1.0 g of methane produces about 52 kj of energy as heat. In contrast, a nuclear reaction of 1.0 g of uranium-235 produces about 8.2 X 10 kj of energy, more than a million times as much. [Pg.821]

We also observe other effects of translational energy in methane which are similar to those found in hydrogen. There is an abstraction reaction for parent ions which also produces a hydronated methane. In studying the reaction... [Pg.131]

Stevenson and Schissler (37) have shown the wide divergence which exists between two repeller studies on the methane reaction (B). A similar situation exists for the perdeutero reaction... [Pg.139]

Direct conversion of methane to ethane and ethylene (C2 hydrocarbons) has a large implication towards the utilization of natural gas in the gas-based petrochemical and liquid fuels industries [ 1 ]. CO2 OCM process provides an alternative route to produce useful chemicals and materials where the process utilizes CO2 as the feedstock in an environmentally-benefiting chemical process. Carbon dioxide rather than oxygen seems to be an alternative oxidant as methyl radicals are induced in the presence of oxygen. Basicity, reducibility, and ability of catalyst to form oxygen vacancies are some of the physico-chemical criteria that are essential in designing a suitable catalyst for the CO2 OCM process [2]. The synergism between catalyst reducibility and basicity was reported to play an important role in the activation of the carbon dioxide and methane reaction [2]. [Pg.213]

C19-0050. What are the half-reactions for these redox processes (a) Aqueous hydrogen peroxide acts on Co, and the products are hydroxide and Co , in basic solution, (b) Methane reacts with oxygen gas and produces water and carbon dioxide, (c) To recharge a lead storage battery, lead(II) sulfate is converted to lead metal and to lead(IV) oxide, (d) Zinc metal dissolves in aqueous hydrochloric acid to give ions and hydrogen gas. [Pg.1417]

Oxygen-containing molecules cannot be tolerated in the ammonia synthesis, primarily because they form iron oxide that blocks the active surface. First the CO2 is removed, through a scrubber, by reaction with a strong base. The remaining CO (and CO2) is then removed by the methanation reaction, converting the CO into methane and water. Finally the water is removed by, for example, molecular sieves. Methane does not present problems because it interacts weakly with the catalyst surface. The gas mixture (Tab. 8.6) is compressed to the roughly 200 bar needed for ammonia synthesis and admitted to the reactor. [Pg.330]

In order to verify the presence of bimetallic particles having mixed metal surface sites (i.e., true bimetallic clusters), the methanation reaction was used as a surface probe. Because Ru is an excellent methanation catalyst in comparison to Pt, Ir or Rh, the incorporation of mixed metal surface sites into the structure of a supported Ru catalyst should have the effect of drastically reducing the methanation activity. This observation has been attributed to an ensemble effect and has been previously reported for a series of silica-supported Pt-Ru bimetallic clusters ( ). [Pg.295]


See other pages where Methane reactions for is mentioned: [Pg.13]    [Pg.141]    [Pg.141]    [Pg.454]    [Pg.39]    [Pg.72]    [Pg.284]    [Pg.13]    [Pg.141]    [Pg.141]    [Pg.454]    [Pg.39]    [Pg.72]    [Pg.284]    [Pg.454]    [Pg.131]    [Pg.145]    [Pg.163]    [Pg.223]    [Pg.16]    [Pg.32]    [Pg.46]    [Pg.119]    [Pg.77]    [Pg.82]    [Pg.139]    [Pg.18]   


SEARCH



Methane reaction

Reactions methanation

© 2024 chempedia.info